Programming Perl

http://kickme.to/tiger/

http://kickme.to/tiger/

O’REILLY"

Programming Per 1

By Larry Wall, Tom Christiansen & Randal L. Schwartz; ISBN 1-56592-149-6, 670 pages.
Second Edition, September 1996.
(See the catalog page for this book.)

Search the text of Programming Perl.

Index

Table of Contents

Preface

Chapter 1: An Overview of Perl

Chapter 2: The Gory Details

Chapter 3: Functions

Chapter 4: References and Nested Data Structures
Chapter 5: Packages, Modules, and Object Classes
Chapter 6: Social Engineering

Chapter 7: The Standard Perl Library

Chapter 8: Other Oddments

Chapter 9: Diagnostic M essages

Glossary

Examples

The Perl CD Bookshelf
Navigation

Copyright © 1999 O'Rellly & Associates. All Rights Reserved.

http://www.oreilly.com/catalog/pperl2/
file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/

E@ Programming Perl —

Preface [Next: The Rest of This Book]

Preface

Contents:
Perl in a Nutshell

The Rest of This Book
Additional Resources

How to Get Perl

Conventions Used in This Book
Acknowledgments

Wed Liketo Hear from You

Perl in a Nutshell

Perl is alanguage for getting your job done.

Of coursg, if your job is programming, you can get your job done with any "complete" computer
language, theoretically speaking. But we know from experience that computer languages differ not so
much in what they make possible, but in what they make easy. At one extreme, the so-called "fourth
generation languages' make it easy to do some things, but nearly impossible to do other things. At the
other extreme, certain well known, "industrial-strength" languages make it equally difficult to do almost
everything.

Perl is different. In anutshell, Perl is designed to make the easy jobs easy, without making the hard jobs
impossible.

And what are these "easy jobs' that ought to be easy? The ones you do every day, of course. Y ou want a
language that makes it easy to manipulate numbers and text, files and directories, computers and
networks, and especially programs. It should be easy to run external programs and scan their output for
interesting tidbits. It should be easy to send those same tidbits off to other programs that can do special
things with them. It should be easy to develop, modify, and debug your own programs too. And, of
course, it should be easy to compile and run your programs, and do it portably, on any modern operating
System.

Perl does all that, and awhole lot more.

Initially designed as a glue language for the UNIX operating system (or any of its myriad variants), Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

also runs on numerous other systems, including MS-DOS, VMS, OS/2, Plan 9, Macintosh, and any
variety of Windows you care to mention. It is one of the most portable programming languages available
today. To program C portably, you haveto put in al those strange #i f def markings for different
operating systems. And to program a shell portably, you have to remember the syntax for each operating
system'’s version of each command, and somehow find the least common denominator that (you hope)
works everywhere. Perl happily avoids both of these problems, while retaining many of the benefits of
both C and shell programming, with some additional magic of its own. Much of the explosive growth of
Perl has been fueled by the hankerings of former UNIX programmers who wanted to take along with
them as much of the "old country” as they could. For them, Perl is the portable distillation of UNIX
culture, an oasis in the wilderness of "can't get there from here". On the other hand, it worksin the other
direction, too: Web programmers are often delighted to discover that they can take their scripts from a
Windows machine and run them unchanged on their UNIX servers.

Although Perl is especially popular with systems programmers and Web developers, it also appealsto a
much broader audience. The hitherto well-kept secret is now out: Perl is no longer just for text
processing. It has grown into a sophisticated, general-purpose programming language with arich
software development environment complete with debuggers, profilers, cross-referencers, compilers,
interpreters, libraries, syntax-directed editors, and all the rest of the trappings of a"real" programming
language. (But don't let that scare you: nothing requires you to go tinkering under the hood.) Perl is being
used daily in every imaginable field, from aerospace engineering to molecular biology, from
computer-assisted design/computer-assisted manufacturing (CAD/CAM) to document processing, from
database manipulation to client-server network management. Perl is used by people who are desperate to
analyze or convert lots of data quickly, whether you're talking DNA sequences, Web pages, or pork belly
futures. Indeed, one of the jokes in the Perl community is that the next big stock market crash will
probably be triggered by a bug in a Perl script. (On the brighter side, any unemployed stock analysts will
still have a marketable skill, so to speak.)

There are many reasons for the success of Perl. It certainly helpsthat Perl isfreely available, and freely
redistributable. But that's not enough to explain the Perl phenomenon, since many freeware packages fail
to thrive. Perl isnot just free; it's also fun. People feel like they can be creative in Perl, because they have
freedom of expression: they get to choose what to optimize for, whether that's computer speed or
programmer speed, verbosity or conciseness, readability or maintainability or reusability or portability or
learnability or teachability. Y ou can even optimize for obscurity, if you're entering an Obfuscated Perl
contest.

Perl can give you all these degrees of freedom because it's essentially alanguage with a split personality.
It's both avery simple language and a very rich language. It has taken good ideas from nearly
everywhere, and installed them into an easy-to-use mental framework. To those who merely like it, Perl
isthe Practical Extraction and Report Language. To those who loveit, Perl is the Pathologically
Eclectic Rubbish Lister. And to the minimalists in the crowd, Perl seemslike a pointless exercisein
redundancy. But that's okay. The world needs a few reductionists (mainly as physicists). Reductionists
like to take things apart. The rest of us are just trying to get it together.

Perl isin many ways a simple language. Y ou don't have to know many special incantations to compile a
Perl program - you can just execute it like a shell script. The types and structures used by Perl are easy to
use and understand. Perl doesn't impose arbitrary limitations on your data - your strings and arrays can

grow as large asthey like (so long as you have memory), and they're designed to scale well as they grow.

Instead of forcing you to learn new syntax and semantics, Perl borrows heavily from other languages you
may already be familiar with (such as C, and sed, and awk, and English, and Greek). In fact, just about
any programmer can read awell-written piece of Perl code and have some idea of what it does.

Most important, you don't have to know everything there is to know about Perl before you can write
useful programs. Y ou can learn Perl "small end first". Y ou can program in Perl Baby-Talk, and we
promise not to laugh. Or more precisely, we promise not to laugh any more than we'd giggle at a child's
creative way of putting things. Many of the ideas in Perl are borrowed from natural language, and one of
the best ideasis that it's okay to use a subset of the language as long as you get your point across. Any
level of language proficiency is acceptable in Perl culture. We won't send the language police after you.
A Perl script is"correct” if it gets the job done before your boss fires you.

Though simple in many ways, Perl is also arich language, and there is much to be learned about it. That's
the price of making hard things possible. Although it will take some time for you to absorb all that Perl
can do, you will be glad that you have access to the extensive capabilities of Perl when the time comes
that you need them. We noted above that Perl borrows many capabilities from the shells and C, but Perl
also possesses a strict superset of sed and awk capabilities. There are, in fact, tranglators supplied with
Perl to turn your old sed and awk scripts into Perl scripts, so you can see how the features you may
aready be familiar with correspond to those of Perl.

Because of that heritage, Perl was a rich language even when it was "just” a data-reduction language,
designed for navigating files, scanning large amounts of text, creating and obtaining dynamic data, and
printing easily formatted reports based on that data. But somewhere along the line, Perl started to
blossom. It also became a language for filesystern manipulation, process management, database
administration, client-server programming, secure programming, Web-based information management,
and even for object-oriented and functional programming. These capabilities were not just slapped onto
the side of Perl - each new capability works synergistically with the others, because Perl was designed to
be a glue language from the start.

But Perl can glue together more than its own features. Perl is designed to be modularly extensible. Perl
allows you to rapidly design, program, debug, and deploy applications, but it also allows you to easily
extend the functionality of these applications as the need arises. Y ou can embed Perl in other languages,
and you can embed other languages in Perl. Through the module importation mechanism, you can use
these external definitions asif they were built-in features of Perl. Object-oriented external libraries retain
their object-orientednessin Perl.

Perl helps you in other ways too. Unlike a strictly interpreted language such as the shell, which compiles
and executes a script one command at atime, Perl first compiles your whole program quickly into an
intermediate format. Like any other compiler, it performs various optimizations, and gives you instant
feedback on everything from syntax and semantic errors to library binding mishaps. Once Perl's compiler
frontend is happy with your program, it passes off the intermediate code to the interpreter to execute (or
optionally to any of several modular back ends that can emit C or bytecode.) This all sounds
complicated, but the compiler and interpreter are quite efficient, and most of us find that the typical
compile-run-fix cycle is measured in mere seconds. Together with Perl's many fail-soft characteristics,
this quick turnaround capability makes Perl alanguage in which you really can do rapid prototyping.
Then later, as your program matures, you can tighten the screws on yourself, and make yourself program
with less flair but more discipline. Perl helps you with that too, if you ask nicely.

Perl aso helps you to write programs more securely. While running in privileged mode, you can
temporarily switch your identity to something innocuous before accessing system resources. Perl also
guards against accidental security errors through a data tracing mechanism that automatically determines
which data was derived from insecure sources and prevents dangerous operations before they can
happen. Finally, Perl lets you set up specially protected compartments in which you can safely execute
Perl code of dubious lineage, masking out dangerous operations. System administrators and CGlI
programmers will particularly welcome these features.

But, paradoxically, the way in which Perl helps you the most has ailmost nothing to do with Perl, and
everything to do with the people who use Perl. Perl folks are, frankly, some of the most helpful folks on
earth. If there's areligious quality to the Perl movement, then thisis at the heart of it. Larry wanted the
Perl community to function like alittle bit of heaven, and he seems to have gotten hiswish, so far. Please
do your part to keep it that way.

Whether you are learning Perl because you want to save the world, or just because you are curious, or
because your boss told you to, this handbook will lead you through both the basics and the intricacies.
And although we don't intend to teach you how to program, the perceptive reader will pick up some of
the art, and alittle of the science, of programming. We will encourage you to develop the three great
virtues of a programmer: laziness, impatience, and hubris. Along the way, we hope you find the book
mildly amusing in some spots (and wildly amusing in others). And if none of thisis enough to keep you
awake, just keep reminding yourself that learning Perl will increase the value of your resume. So keep
reading.

Programming | Next: The Rest of This Book]|
Perl
Book The Rest of This Book
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Perl Preface | Next: Additional Resources
in a Nutshell

The Rest of This Book

Here's how the book is laid out:

Chapter 1, An Overview of Perl. Getting started is always hard to do. This chapter presents the

fundamental ideas of Perl in an informal, curl-up-in-your-favorite-chair fashion. Not a full tutorial, it
merely offers a quick jump-start, which may not serve everyone's need. Learning Perl (discussed in the

next section) offers a more complete, carefully paced introduction to the language.

Chapter 2, The Gory Details. This chapter consists of an in-depth, no-holds-barred discussion of the guts

of the language, from data types, variables, and objects to functions, subroutines, and modules, as well as
special variables, control flow, and regular expressions. You'll gain a good sense of how the language
works.

Chapter 3, Functions. Here you'll find an authoritative, reference-style description of Perl's built-in
functions. The explanations cover function syntax, arguments, and general use.

Chapter 4, References and Nested Data Structures. References in Perl are analogous to pointersin C.

This chapter tells you how to create references, how to get at the data they refer to, and how to build
complex, nested data structures by using references. A tutorial and extensive examples guide you through
the subtleties of the topic.

Chapter 5, Packages, Modules, and Object Classes. Packages give you atool for namespace
management, and library modules enable you to write reusable code. Together, packages and modules
provide a basis for Perl's object-oriented facilities. In addition to explaining these matters, this chapter
offers a brief refresher on object-oriented programming, illustrates how to treat built-in variables as
objects, and provides some hints for good object-oriented design using Perl.

Chapter 6, Social Engineering. This chapter presents how Perl tries to cooperate with everything and
everyone in the whole wide world, up to apoint.

Chapter 7, The Standard Perl Library. This reference chapter describes all the library modules that come

with the standard Perl distribution. These modules greatly extend the range of the language. Interfacesto
standard database packages, tools for managing terminal input, mechanisms for loading code on the fly at
run-time, mathematical packages, safe programming aids, and much else - it iswell worth your time to
browse through the brief listing of modules at the beginning of this chapter.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm

Chapter 8, Other Oddments. L eftovers worthy of a main meal: the Perl debugger, efficiency
considerations, common mistakes, programming style, and afew historical and postmodernist notes.

Chapter 9, Diagnostic Messages. Special communications from Perl to you at particularly difficult
moments - sometimes helpful, occasionally snide, and too often ignored. But never irrelevant.

Glossary. The words and definitions you'll find here aren't exactly what you'd expect in anormal

glossary, but Perl is not really anormal language (nor are the authors of this book really normal authors,
or normally real authors).

Previous: Perl Programming | Next: Additional Resources|
in a Nutshell Perl

Perl in a Nutshell Book Additional Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: The Rest of This Preface Next: How to
Book Get Perl

Additional Resources

Perl Manpages

The online manpages for Perl have been divided into separate sections so you can easily find what you
are looking for without wading through hundreds of pages of text. Since the top-level manpage is smply
called perl, the UNIX command "man per | " should take you to it.[1] That page in turn directs you to
more specific pages. For example, "man per | r e" will display the manpage for Perl's regular
expressions. The per | doc command may work when the man(1) command won't, especially on
module documentation that your system administrator may not have felt comfortable installing with the
ordinary manpages. On the other hand, your system administrator may have installed the Perl
documentation in hypertext markup language (HTML) format.

[1] If you still get a humongous page when you do that, you're probably picking up the
ancient Release 4 manpage. Check your MANPATH for archeological sites.

Usenet Newsgroups

The Perl newsgroups are a great, if sometimes cluttered, source of information about Perl.
comp.lang.perl.announce is a moderated, low-traffic newsgroup for Perl-related announcements. These

often deal with new version releases, bug fixes, new extensions and modules, and Frequently Asked
Questions (FAQs).

The high-traffic comp.lang.perl.misc group discusses everything from technical issues to Perl philosophy
to Perl games and Perl poetry. Like Perl itself, comp.lang.perl.misc is meant to be useful, and no question
iIstoo silly to ask.[2]

[2] Of course, some questions are too silly to answer, especially those aready answered in
the FAQ.

The comp.lang.perl.tk group discusses how to use the popular Tk toolkit from Perl. The
comp.lang.perl.modules group is about the development and use of Perl modules, which are the best way

to get reusable code. There may be other comp.lang.perl.whatever newsgroups by the time you read this;
look around.

One other newsgroup you might want to check out, at least if you're doing CGI programming on the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
news:comp.lang.perl.announce
news:comp.lang.perl.misc
news:comp.lang.perl.misc
news:comp.lang.perl.tk
news:comp.lang.perl.modules

Web, is comp.infosystems.www.authoring.cgi. Whileit isn't strictly speaking a Perl group, most of the
programs discussed there are written in Perl. It's the right place to go for Web-related Perl issues.

The Perl Homepage

If you have accessto the World Wide Web, visit the Perl homepage at http://www.perl.com/perl/. It tells
what's new in the Perl world, and contains source code and ports, documentation, third-party modules,
the Perl bugs database, mailing list information, and more. This site also provides the CPAN multiplexer,
described later.

Also check out http://www.perl.org/, which is the homepage of the Perl Institute, a non-profit
organization dedicated to saving the world through serving the Perl community.

Frequently Asked Questions List

The Perl Frequently Asked Questions (FAQ) is acollection of questions and answers that often show up
on comp.lang.perl.misc. In many respectsit is a companion to the available books, explaining concepts
that people may not have understood and maintaining up-to-date information about such things as the
latest release level and the best place to get the Perl source.

Thereis also ametaFAQ, which answers supercommon guestions. It has pointers to the current Perl
distribution, various non-UNIX ports, and the full FAQ. There may be other FAQs you will find useful -
for example, FAQs about non-UNIX ports, Web programming, or perltk.

Another FAQish sort of posting isthe Perl Modules List, which keeps track of all the various existing
and proposed modules that various folks have worked on, or will work on someday real soon now.
Included are the email addresses of people to bug, and much free advice on module design. A must-read
for people who don't want to reinvent either the buggy whip or the wheel.

The FAQs are periodically posted to comp.lang.perl.announce, and can aso be found on the web at
http://www.perl.com/perl/fag.

Bug Reports

In the unlikely event that you should encounter a bug that's in Perl proper and not just in your own
program, you should try to reduce it to aminimal test case and then report it with the perlbug program
that comes with Perl.

The Perl Distribution

Perl is distributed under either of two licenses (your choice). Thefirst isthe standard GNU Copyleft,
which means briefly that if you can execute Perl on your system, you should have access to the full
source of Perl for no additional charge. Alternately, Perl may also be distributed under the Artistic
License, which some people find less threatening than the Copyleft (especially lawyers).

Within the Perl distribution, you will find some example programs in the eg/ directory. Y ou may also
find other tidbits. Poke around in there on some rainy afternoon. Study the Perl source (if youreaC

news:comp.infosystems.www.authoring.cgi
http://www.perl.com/perl/
http://www.perl.org/
news:comp.lang.perl.misc
news:comp.lang.perl.announce
http://www.perl.com/perl/faq

hacker with a masochistic streak). Look at the test suite. See how Configure determines whether you
have the mkdir(2) system call. Figure out how Perl does dynamic loading of C modules. Or whatever else
suits your fancy.

Other Books

Learning Perl by Randal Schwartz (published by O'Reilly & Associates) is acompanion to Programming
Perl. It ismore of atutorial, whereas this book is more of areference. If the tutorial section of
Programming Perl istoo short or assumes too much about your background, try Learning Perl for a

kinder, gentler introduction to the language. If you want to learn more about Perl's regular expressions,
we suggest Mastering Regular Expressions, by Jeffrey E.F. Friedl (also published by O'Reilly &
Associates).

The AWK Programming Language, by Aho, Kernighan, and Weinberger (published by
Addison-Wesley), and sed & awk, by Dale Dougherty (published by O'Reilly & Associates), provide an
essential background in such things as associative arrays, regular expressions, and the general worldview
that gave rise to Perl. They also contain many examples that can be translated into Perl by the
awk-to-perl tranglator a2p or by the sed-to-perl translator s2p. These translators won't produce idiomatic
Perl, of course, but if you can't figure out how to imitate one of those examplesin Perl, the trand ator
output will give you agood place to start.

We also recommend Johan VVromans's convenient and thorough quick reference booklet, called Perl 5
Desktop Reference, published coincidentally by O'Rellly & Associates.

Previous: The Rest of This Programming Next: How to
Book Perl Get Perl
The Rest of This Book Book How to Get Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

ﬁ@ Programming Perl —

Previous: Additional Preface Next: Conventions Used in
Resources This Book

How to Get Perl

The main distribution point for Perl is the Comprehensive Perl Archive Network, or CPAN. This archive
contains not only the source code, but also just about everything you could ever want that's Perl-related.
CPAN ismirrored by dozens of sites all over the world, as well as afew down under. The main siteis
ftp.funet.fi (128.214.248.6). Y ou can find a more local CPAN site by getting the file

/pub/languages/perl/CPAN/MIRRORS from ftp.funet.fi. Or you can use your Web browser to access the
CPAN multiplex service at www.perl.com. Whenever you ask this Web server for afile starting with /CPAN/,
it connects you to a CPAN site, which it chooses by looking at your domain name. Here are some popular
universal resource locators (URLS) out of CPAN:

http://ww. perl.conl CPAN

http://ww. perl.conm’ CPAN README. ht m

http://ww. perl.conml CPAN nodul es/

http://ww. perl.conl CPAN ports/

http://ww. perl.conf CPAN src/latest.tar.gz

The CPAN multiplex service tries to connect you to alocal, fast machine on alarge bandwidth hub. This
doesn't always work, however, because domain names may not reflect network connections. For example, you
might have a hosthame ending in .se but you may actually be better connected to North Americathan to
Sweden. If so, you can use the following URL to choose your own site:

http://ww. perl.coni CPAN

Note the absence of a slash at the end of the URL. When you omit the trailing slash, the CPAN multiplexer
presents a menu of CPAN mirrors from which you can select asite. It will remember your choice next time.

The following machines should have the Perl source code plus a copy of the CPAN mirror list - both available
for anonymous FTP. (Try to use the machine names rather than the numbers, since the numbers may change.)

ftp.perl.com 199. 45.129. 30
ftp.cs.col orado. edu 131. 211. 80. 17
ftp.cise.ufl.edu 128. 227. 162. 34
ftp.funet.fi 128. 214. 248. 6
ftp.cs.ruu.nl 131.211.80. 17

The location of the top directory of the CPAN mirror differs on these machines, so look around once you get
there. It's often something like /pub/per|/CPAN.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
ftp://ftp.funet.fi/
ftp://ftp.funet.fi/pub/languages/perl/CPAN/MIRRORS
ftp://ftp.funet.fi/
http://www.perl.com/
http://www.perl.com/CPAN/
http://www.perl.com/CPAN/
http://www.perl.com/CPAN/README.html
http://www.perl.com/CPAN/modules/
http://www.perl.com/CPAN/ports/
http://www.perl.com/CPAN/src/latest.tar.gz
http://www.perl.com/CPAN
ftp://ftp.perl.com/
ftp://ftp.cs.colorado.edu/
ftp://ftp.cise.ufl.edu/
ftp://ftp.funet.fi/
ftp://ftp.cs.ruu.nl/

Where the Files Are

Under the main CPAN directory, you'll see at least the following subdirectories:

« authors. Thisdirectory contains numerous subdirectories, one for each contributor of software. For
example, if you wanted to find Lincoln Stein's great CGI module, and you knew for afact that he wrote
it, you could look in authorg/Lincoln_Sein. If you didn't know he wrote it, you could look in the
modules directory explained below.

« doc. A directory containing all manner of Perl documentation. Thisincludes all official documentation
(manpages) in several formats (such as ASCI| text, HTML, PostScript, and Perl's native POD format),
plus the FAQs and interesting supplementary documents.

« modules. Thisdirectory contains unbundled modules written in C, Perl, or both. Extensions allow you to
emulate or access the functionality of other software, such as Tk graphical facilities, the UNIX curses
library, and math libraries. They also give you away to interact with databases (Oracle, Sybase, etc.),
and to manage HTML filesand CGlI scripts.

« ports. Thisdirectory contains the source code and/or binaries for Perl ports to operating systems not
directly supported in the standard distribution. These ports are the individual efforts of their respective
authors, and may not all function precisely as described in this book. For example, none of the MS-DOS
ports implement the fork function, for some reason.

» scripts. A collection of diverse scripts from all over the world. If you need to find out how to do
something, or if you just want to see how other people write programs, check this out. The subdirectory
nutshell contains the examples from this book. (Y ou can aso find these sources at the O'Rellly &
Associates ftp.oreilly.com site, in /pub/examples/nutshell/programming perl2/.)

« src. Within this directory you will find the source for the standard Per| distribution. The current
production release is dways in thefile that is called src/latest.tar.gz,[3] which as of thiswritingisa
symbolic link to the file src/5.0/per|5.003.tar.gz, but will likely point to a higher version number by the
time you read this. This very large file contains full source and documentation for Perl. Configuration
and installation should be relatively straightforward on UNIX and UNIX-like systems, aswell asVMS
and OS/2.

[3] Thetrailing .tar.gz meansthat it'sin the standard Internet format of a GNU-zipped, tar
archive.

Using Anonymous FTP

In the event you've never used anonymous FTP, hereisaquick primer in the form of a sample session with
comments. Text in bold typewriter font is what you should type; comments are in italics. The %represents
your prompt, and should not be typed.

%ftp ftp. CPAN.org (ftp.CPAN.org is not a real site)

Connected to ftp. CPAN. org.

220 CPAN FTP server (Version wu-2.4(1) Fri Dec 1 00:00:00 EST 1995) ready.
Nanme (ftp. CPAN. org: CPAN): anonynous

331 Guest login ok, send your conplete e-nmail address as password.
Password: canel @wutshell.com (Use your user nane and host here.)

230 Guest login ok, access restrictions apply.

ftp://ftp.oreilly.com/
ftp://ftp.oreilly.com/pub/examples/nutshell/programming_perl2/

ftp> cd pub/perl/CPAN src

250 CWD command successf ul .

ftp> binary (You nmust specify binary transfer for conpressed files.)
200 Type set to |I.

ftp> get latest.tar.gz

200 PORT command successful .

150 Openi ng BI NARY node data connection for FILE

226 Transfer conplete.

(repeat this step for each file you want)

ftp> quit .

221 Goodbye.

%

Once you have the files, first unzip and untar them, and then configure, build, and install Perl:

% gunzip < latest.tar.gz | tar xvf -
% cd perl 5.003 (Use actual directory nane.)

Now ei t her one of these next two |ines:

% sh configure (Lowercase "c" for automatic configuration)
% sh Configure (Capital "C' for manual configuration)

% make (Build all of Perl.)

% make test (Make sure it works.)

% make i nstall (You should be the superuser for this.)

Fetching modules

For retrieving and building unbundled Perl modules, the processis slightly different. Let's say you want to
build and install a module named CoolMod. You'd first fetch it viaftp(1), or you could use your Web browser
to access the modul e service from http://www.perl.com/, which always retrieves the most up-to-date version

of a particular registered module. The address to feed your browser would be something like:
http://ww. perl . cont cgi - bi n/ cpan_nod?nodul e=Cool Mod

Once you've gotten the file, do this:

% gunzip < Cool Mbd-2.34.tar.gz | tar xvf -
% cd Cool Mbd- 2. 34
% perl Makefile.PL (Creates the real Makefile)

% make (Buil d the whol e nodul e.)
% make test (Make sure it works.)
% make i nstall (Probably should be the superuser)

When the CoolMod module has been successfully installed (it will be automatically placed in your system's
Perl library path), your programs can use Cool Mod, and you should be able to run man CoolMod (or maybe
perldoc CoolMod) to read the modul€'s documentation.

http://www.perl.com/

Previous: Additional Programming Next: Conventions Used in

Resources Perl This Book
Additional Resources Book Conventions Used in This
Index Book

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: How Preface Next:
to Get Perl Acknowledgments

Conventions Used in This Book

Since we pretty much made them up as we went along to fit different circumstances, we describe them as
we go aong, too. In genera, though, the names of filesand UNIX utilities are printed in italics, the
names of Perl functions, operators, and other keywords of the language are in bold, and examples or
fragments of Perl codeareinconst ant w dt h, and generic code terms for which you must substitute
particular valuesareini t al i ¢ const ant w dt h. Datavalues are represented by const ant

wi dt h in roman gquotes, which are not part of the value.

Previous: How Programming Next:
to Get Perl Perl Acknowledgments
How to Get Perl Book Acknowledgments
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Conventions Used Preface Next: We'd Like to Hear from
in This Book You

Acknowledgments

Thiswork would not have been possible without the help of alot of folks. We can't possibly name
everyone here, and undoubtedly we've overlooked at least one major contributor; but here are at |east
some of the folks that we'd like to thank publicly and profusely for their contributions of verbiage and
vitality: Ilya Zakharevich, Johan Vromans, Mike Stok, Lincoln Stein, Aaron Sherman, David Muir
Sharnoff, Gurusamy Sarathy, Tony Sanders, Chip Salzenberg, Dean Roehrich, Randy J. Ray, Hal
Pomeranz, Tom Phoenix, Jon Orwant, Jeff Okamoto, Bill Middleton, Paul Marquess, John Macdonald,
Andreas Koenig, Nick Ing-Simmons, Sharon Hopkins, Jarkko Hietaniemi, Felix Gallo, Hallvard B.
Furuseth, Jeffrey Friedl, Chaim Frenkel, Daniel Faigin, Andy Dougherty, Tim Bunce, Mark Biggar,
Malcolm Beattie, Graham Barr, Charles Bailey, and Kenneth Albanowski. Not necessarily in that order.

The authors would also like to thank all of their personal friends (and relations) for remaining their
personal friends (and relations) throughout the long, wearisome process.

We'd like to express our specia gratitude to Tim O'Rellly for encouraging authors to write the sort of
books people might enjoy reading.

Thanks aso to the staff at O'Reilly & Associates. Steve Talbott was the technical editor. Nicole Gipson
Arigo was the production editor and project manager. Joseph Pomerance was the copyeditor, and Steven
Kleinedler proofread the book. Kismet McDonough-Chan and Sheryl Avruch performed quality control
checks. Seth Maislin wrote the index. Erik Ray, Ellen Siever, and Lenny Muellner worked with the tools
to create the book. Nancy Priest and Mary Jane Walsh designed the interior book layout, and Edie
Freedman and Hanna Dyer designed the front cover.

Previous: Conventions Used Programming Next: We'd Like to Hear from
in This Book Perl You
Conventions Used in This Book Wed Like to Hear from Y ou
Book Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Preface | Next: 1. An Overview of Perl|
Acknowledgments

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, aswell as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Previous: Programming | Next: 1. An Overview of Perl|
Acknowledgments Perl
Acknowledgments Book 1. An Overview of Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: We'd Like to Hear Chapter 1 Next: 1.2 Natural and Atrtificial
from You Languages

1. An Overview of Perl

Contents:
Getting Started

Natural and Artificial Languages

A Grade Example

Filehandles

Operators

Control Structures

Regular Expressions

List Processing

What You Don't Know Won't Hurt Y ou (Much)

1.1 Getting Started

We think that Perl is an easy language to learn and use, and we hope to convince you that we're right.
One thing that's easy about Perl is that you don't have to say much before you say what you want to say.
In many programming languages, you have to declare the types, variables, and subroutines you are going
to use before you can write the first statement of executable code. And for complex problems demanding
complex data structures, thisisagood idea. But for many simple, everyday problems, you would like a
programming language in which you can simply say:

print "Howdy, world!/\n";

and expect the program to do just that.

Perl is such alanguage. In fact, the example is a complete program,[1] and if you feed it to the Perl
interpreter, it will print "Howdy, wor | d! " onyour screen.

[1] Or script, or application, or executable, or doohickey. Whatever.

And that's that. Y ou don't have to say much after you say what you want to say, either. Unlike many
languages, Perl thinks that falling off the end of your program isjust a normal way to exit the program.
Y ou certainly may call the exit function explicitly if you wish, just as you may declare some of your

variables and subroutines, or even force yourself to declare all your variables and subroutines. But it's

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

your choice. With Perl you're free to do The Right Thing, however you care to define it.

There are many other reasons why Perl is easy to use, but it would be pointless to list them all here,
because that's what the rest of the book isfor. The devil may be in the details, as they say, but Perl tries
to help you out down there in the hot place too. At every level, Perl is about helping you get from here to
there with minimum fuss and maximum enjoyment. That's why so many Perl programmers go around
with asilly grin on their face.

This chapter is an overview of Perl, so we're not trying to present Perl to the rational side of your brain.
Nor are we trying to be complete, or logical. That's what the next chapter isfor.[2] This chapter presents
Perl to the other side of your brain, whether you prefer to call it associative, artistic, passionate, or
merely spongy. To that end, we'll be presenting various views of Perl that will hopefully give you as
clear apicture of Perl asthe blind men had of the elephant. Well, okay, maybe we can do better than that.
We're dealing with a camel here. Hopefully, at least one of these views of Perl will help get you over the
hump.

[2] Vulcans (and like-minded humans) should skip this overview and go straight to Chapter
2, The Gory Details, for maximum information density. If, on the other hand, you're looking
for acarefully paced tutorial, you should probably get Randal's nice book, Learning Perl
(published by O'Reilly & Associates). But don't throw out this book just yet.

Previous: We'd Like to Hear Programming Next: 1.2 Natural and Artificial
from You Perl Languages
Wed Liketo Hear from You Book 1.2 Natural and Artificia
Index L anguages

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

| Previous: 1.1 Getting Started| Chapter 1 | Next: 1.3 A Grade Example]
An Overview of Per|

1.2 Natural and Artificial Languages

Languages were first invented by humans, for the benefit of humans. In the annals of computer science,
this fact has occasionally been forgotten.[3] Since Perl was designed (loosely speaking) by an occasional
linguist, it was designed to work smoothly in the same ways that natural language works smoothly.
Naturally, there are many aspectsto this, since natural language works well at many levels
simultaneously. We could enumerate many of these linguistic principles here, but the most important
principle of language design is simply that easy things should be easy, and hard things should be
possible. That may seem obvious, but many computer languages fail at one or the other.

[3] More precisely, this fact has occasionally been remembered.

Natural languages are good at both because people are continually trying to express both easy things and
hard things, so the language evolves to handle both. Perl was designed first of all to evolve, and indeed it
has evolved. Many people have contributed to the evolution of Perl over the years. We often joke that a
camel is ahorse designed by a committee, but if you think about it, the camel is pretty well adapted for
life in the desert. The camel has evolved to be relatively self-sufficient.[4]

[4] On the other hand, the camel has not evolved to smell good. Neither has Perl.

Now when someone utters the word "linguistics', many people think of one of two things. Either they
think of words, or they think of sentences. But words and sentences are just two handy ways to "chunk”
speech. Either may be broken down into smaller units of meaning, or combined into larger units of
meaning. And the meaning of any unit depends heavily on the syntactic, semantic, and pragmatic context
in which the unit is located. Natural language has words of various sorts, nouns and verbs and such. If |
say "dog" inisolation, you think of it asanoun, but | can also use the word in other ways. That is, anoun
can function as a verb, an adjective or an adverb when the context demandsiit. If you dog a dog during
the dog days of summer, you'll be adog tired dogcatcher.[5]

[5] And you're probably dog tired of all thislinguistics claptrap. But we'd like you to
understand why Perl is different from the typical computer language, doggone it!

Perl| also evaluates words differently in various contexts. We will see how it does that later. Just
remember that Perl istrying to understand what you're saying, like any good listener does. Perl works
pretty hard to try to keep up its end of the bargain. Just say what you mean, and Perl will usually "get it".
(Unless you're talking nonsense, of course - the Perl parser understands Perl alot better than either
English or Swahili.)

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

But back to nouns. A noun can name a particular object, or it can name a class of objects generically
without specifying which one or ones are currently being referred to. Most computer languages make this
distinction, only we call the particular thing a value and the generic one avariable. A value just exists
somewhere, who knows where, but a variable gets associated with one or more values over itslifetime.
So whoever isinterpreting the variable has to keep track of that association. That interpreter may bein
your brain, or in your computer.

1.2.1 Nouns

A variableisjust ahandy place to keep something, a place with a name, so you know where to find your
special something when you come back looking for it later. Asinreal life, there are various kinds of
places to store things, some of them rather private, and some of them out in public. Some places are
temporary, and other places are more permanent. Computer scientists love to talk about the "scope” of
variables, but that's all they mean by it. Perl has various handy ways of dealing with scoping issues,
which you'll be happy to learn later when the timeisright. Which is not yet. (Look up the adjectives
"local" and "my" in Chapter 3, Functions, when you get curious.)

But amore immediately useful way of classifying variablesis by what sort of datathey can hold. Asin
English, Perl's primary type distinction is between singular and plural data. Strings and numbers are
singular pieces of data, whilelists of strings or numbers are plural. (And when we get to object-oriented
programming, you'll find that an object looks singular from the outside, but may look plural from the
inside, like a class of students.) We call asingular variable a scalar, and aplura variable an array. Since
astring can be stored in ascalar variable, we might write a slightly longer (and commented) version of
our first example like this:

$phrase = "Howdy, world!\n"; # Set a vari abl e.
print $phrase; # Print the vari able.

Note that we did not have to predefine what kind of variable $phr ase is. The $ character tells Perl that
phr ase isascalar variable, that is, one containing asingular value. An array variable, by contrast,
would start with an @character. (It may help you to remember that a$ isastylized"S", for "scalar”,
while @is astylized "a", for "array".)

Perl has some other variable types, with unlikely nameslike "hash”, "handle", and "typeglob”. Like
scalars and arrays, these types of variables are also preceded by funny characters.[6] For completeness,

Table 1.1 lists al the funny characters you'll encounter.

[6] Some language purists point to these funny characters as a reason to abhor Perl. Thisis
superficial. These characters have many benefits: Variables can be interpolated into strings
with no additional syntax. Perl scripts are easy to read (for people who have bothered to
learn Perl!) because the nouns stand out from verbs, and new verbs can be added to the
language without breaking old scripts. (We told you Perl was designed to evolve.) And the
noun analogy is not frivolous - there is ample precedent in various natural languages for
requiring grammatical noun markers. It's how we think! (We think.)

Table 1.1: Variable Syntax

Type Character [Example Isanamefor:

Scalar $ $cent s An individual value (number or string)
Array @ @ ar ge A list of values, keyed by number
Hash % % nt er est | A group of values, keyed by string
Subroutine | & &how A callable chunk of Perl code
Typeglob | * *struck Everything named st r uck

1.2.1.1 Singularities

From our example, you can see that scalars may be assigned a new value with the = operator, just asin
many other computer languages. Scalar variables can be assigned any form of scalar value: integers,
floating-point numbers, strings, and even esoteric things like references to other variables, or to objects.
There are many ways of generating these values for assignment.

Asinthe UNIX shell, you can use different quoting mechanisms to make different kinds of values.
Double gquotation marks (double quotes) do variable interpolation[7] and backslash interpretation,| 8]
while single quotes suppress both interpolation and interpretation. And backquotes (the ones leaning to
the left) will execute an external program and return the output of the program, so you can captureit asa
single string containing all the lines of output.

[7] Sometimes called "substitution" by shell programmers, but we prefer to reserve that
word for something else in Perl. So please call it interpolation. We're using the term in the
textual sense ("this passage is a Gnostic interpolation”) rather than in the mathematical sense
("this point on the graph is an interpolation between two other points").

[8] Such asturning\ t into atab, \ n into anewline, \ 001 intoaCTRL-A, and so on, in the
tradition of many UNIX programs.

$answer = 42; an integer

$pi = 3. 14159265; a "real" numnber

$avocados = 6.02e23; scientific notation

$pet = "Canel "; string

$sign = "I love ny $pet”; string wwth interpol ation
$cost = "It costs $100'; string w thout interpolation

anot her vari abl e

an expression

string output froma conmand
nunmeric status of a command
an obj ect

$t hence = $whence;

$x = $nol es * $avocados;

$cwd = pwd;

$exit = system("vi $x");

$fido = new Canel "Fido";

Uninitialized variables automatically spring into existence as needed. Following the principle of least
surprise, they are created with anull value, either " " or 0. Depending on where you use them, variables
will be interpreted automatically as strings, as numbers, or as "true" and "false" values (commonly called
Boolean values). Various operators expect certain kinds of values as parameters, so we will speak of

HFHHFHFHHHFHEHHFH

those operators as "providing” or "supplying" ascalar context to those parameters. Sometimes we'll be
more specific, and say it supplies a numeric context, a string context, or a Boolean context to those
parameters. (Later we'll also talk about list context, which is the opposite of scalar context.) Perl will
automatically convert the data into the form required by the current context, within reason. For example,
suppose you said this;

$canels = '123';

print $canels + 1, "\n";

The original value of $canel s isastring, but it is converted to a number to add 1 to it, and then
converted back to a string to be printed out as 124. The newline, represented by "\ n" , isalso in string
context, but since it's already a string, no conversion is necessary. But notice that we had to use double
guotes there - using single quotesto say ' \ n' would result in atwo-character string consisting of a
backslash followed by an "n", which is not a newline by anybody's definition.

So, in asense, double quotes and single quotes are yet another way of specifying context. The
interpretation of the innards of a quoted string depends on which quotes you use. Later we'll see some
other operators that work like quotes syntactically, but use the string in some special way, such as for
pattern matching or substitution. These all work like double-quoted strings too. The double-quote context
isthe "interpolative" context of Perl, and is supplied by many operators that don't happen to resemble
double quotes.

1.2.1.2 Pluralities

Some kinds of variables hold multiple values that are logically tied together. Perl has two types of
multivalued variables: arrays and hashes. In many ways these behave like scalars. They spring into
existence with nothing in them when needed. When you assign to them, they supply alist context to the
right side of the assignment.

You'd use an array when you want to look something up by number. Y ou'd use a hash when you want to
look something up by name. The two concepts are complementary. Y ou'll often see people using an array
to translate month numbers into month names, and a corresponding hash to translate month names back
into month numbers. (Though hashes aren't limited to holding only numbers. Y ou could have a hash that
translates month names to birthstone names, for instance.)

Arrays.

An array isan ordered list of scalars, accessed[9] by the scalar's position in the list. The list may contain
numbers, or strings, or a mixture of both. (In fact, it could also contain references to other lists, but welll
get to that in Chapter 4, References and Nested Data Structures, when we're discussing multidimensional
arrays.) To assign alist value to an array, you simply group the variables together (with a set of
parentheses):

[9] Or keyed, or indexed, or subscripted, or looked up. Take your pick.
@one = ("couch", "chair", "table", "stove");
Conversely, if you use @hone in alist context, such as on the right side of alist assignment, you get
back out the same list you put in. So you could set four scalar variables from the array like this:
($potato, $lift, $tennis, $pipe) = @one;

These are called list assignments. They logically happen in parallel, so you can swap two variables by
saying:
(%al pha, $onega) = ($onega, $al pha);

Asin C, arrays are zero-based, so while you would talk about the first through fourth elements of the
array, you would get to them with subscripts O through 3.[10] Array subscripts are enclosed in square
brackets [like this], so if you want to select an individual array element, you would refer to it as
$hone[n] , where n is the subscript (one less than the element number) you want. See the example
below. Since the element you are dealing with is a scalar, you always precede it with a $.

[10] If this seems odd to you, just think of the subscript as an offset, that is, the count of how
many array elements come before it. Obvioudly, the first element doesn't have any elements
before it, and so has an offset of 0. Thisis how computers think. (We think.)

If you want to assign to one array element at atime, you could write the earlier assignment as:

$hone[0] = "couch";
$hone[1] = "chair";
$honme[2] = "table";
$hone[3] = "stove";

Since arrays are ordered, there are various useful operations that you can do on them, such as the stack
operations, push and pop. A stack is, after all, just an ordered list, with a beginning and an end.
Especially an end. Perl regards the end of your list as the top of a stack. (Although most Perl
programmers think of alist as horizontal, with the top of the stack on the right.)

Hashes.

A hash isan unordered set of scalars, accessed[11] by some string value that is associated with each
scalar. For this reason hashes are often called "associative arrays'. But that's too long for lazy typiststo
type, and we talk about them so often that we decided to name them something short and snappy.[12]
The other reason we picked the name "hash" isto emphasize the fact that they're disordered. (They are,
coincidentally, implemented internally using a hash-table lookup, which is why hashes are so fast, and
stay so fast no matter how many values you put into them.) Y ou can't push or pop a hash though,
because it doesn't make sense. A hash has no beginning or end. Neverthel ess, hashes are extremely
powerful and useful. Until you start thinking in terms of hashes, you aren't really thinking in Perl.

[11] Or keyed, or indexed, or subscripted, or looked up. Take your pick.

[12] Presuming for the moment that we can classify any sort of hash as "snappy". Please
pass the Tabasco.

Since the keys to a hash are not automatically implied by their position, you must supply the key as well
as the value when populating a hash. You can still assign alist to it like an ordinary array, but each pair
of itemsin the list will be interpreted as a key/value pair. Suppose you wanted to translate abbreviated
day names to the corresponding full names. Y ou could write the following list assignment.

% ongday = (" Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday",
"Wed", "Wednesday", "Thu", "Thursday", "Fri",

“Friday", "Sat", "Saturday");

Because it is sometimes difficult to read a hash that is defined like this, Perl provides the => (equal sign,
greater than) sequence as an alternative separator to the comma. Using this syntax (and some cresative
formatting), it is easier to see which strings are the keys, and which strings are the associated values.
% ongday = (

"Sun" => "Sunday",

"Mon" => "Monday",

"Tue" => "Tuesday",

"Wed" => "Wednesday",

"Thu" => "Thursday",

"Fri" => "Friday",

"Sat" => "Saturday",
);

Not only can you assign alist to ahash, aswe did above, but if you use ahash in list context, it'll convert
the hash back to alist of key/value pairs, in aweird order. Thisis occasionally useful. More often people
extract alist of just the keys, using the (aptly named) keys function. The key list is aso unordered, but

can easily be sorted if desired, using the (aptly named) sort function. More on that |ater.

Because hashes are afancy kind of array, you select an individual hash element by enclosing the key in
braces. So, for example, if you want to find out the value associated with WWed in the hash above, you
would use $| ongday{" Wed" } . Note again that you are dealing with a scalar value, so you use $, not
%

Linguistically, the relationship encoded in ahash is genitive or possessive, like the word "of" in English,
or like"'s'. The wife of Adam is Eve, so we write:

$wi fe{"Adanf'} = "Eve";
1.2.2 Verbs

Asistypical of your typical imperative computer language, many of the verbs in Perl are commands:
they tell the Perl interpreter to do something. On the other hand, asistypical of a natural language, the
meanings of Perl verbs tend to mush off in various directions, depending on the context. A statement
starting with averb is generally purely imperative, and evaluated entirely for its side effects. We often
call these verbs procedures, especialy when they're user-defined. A frequently seen command (in fact,
you've seen it already) is the print command:

print "Adamis wife is ", $wife{ ' Adam}, ".\n";
This has the side effect of producing the desired output.

But there are other "moods" besides the imperative mood. Some verbs are for asking questions, and are
useful in conditional statements. Other verbs trandlate their input parametersinto return values, just asa
recipe tells you how to turn raw ingredients into something (hopefully) edible. We tend to call these
verbs functions, in deference to generations of mathematicians who don't know what the word
“functional” meansin natural language.

An example of a built-in function would be the exponential function:
$e = exp(1); # 2.718281828459, or thereabouts

But Perl doesn't make a hard distinction between procedures and functions. Y ou'll find the terms used
interchangeably. Verbs are also sometimes called subroutines (when user-defined) or operators (when
built-in). But call them whatever you like - they all return avaue, which may or may not be a
meaningful value, which you may or may not choose to ignore.

Aswe go on, you'll see additional examples of how Perl behaves like a natural language. But there are
other waysto look at Perl too. We've already sneakily introduced some notions from mathematical
language, such as addition and subscripting, not to mention the exponential function. But Perl isalso a
control language, a glue language, a prototyping language, a text-processing language, a list-processing
language, and an object-oriented language. Among other things.

But Perl isalso just aplain old computer language. And that's how we'll look at it next.

| Previous: 1.1 Getting Started| Programming | Next: 1.3 A Grade Example]
Perl

1.1 Getting Started Book 1.3 A Grade Example
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.2 Natural and Chapter 1 Next: 1.4
Artificial Languages An Overview of Perl Filehandles

1.3 A Grade Example

Suppose you had a set of scores for each member of a class you are teaching. You'd like a combined list
of all the grades for each student, plus their average score. Y ou have atext file (imaginatively named
grades) that looks like this:

Noél 25

Ben 76

Cl enenti ne 49
Nor m 66

Chris 92

Doug 42

Carol 25

Ben 12
Clenmentine O
Nor m 66

Y ou can use the following script to gather all their scores together, determine each student's average, and
print them all out in alphabetical order. This program assumes, rather naively, that you don't have two
Carolsinyour class. That is, if thereis a second entry for Carol, the program will assume it's just another
score for the first Carol (not to be confused with the first Noél).

By the way, the line numbers are not part of the program, any other resemblancesto BASIC
notwithstanding.

#! [usr/ bi n/ perl

open(GRADES, "grades") or die "Can't open grades: $'\n";
while ($line = <GRADES>) {

($student, $grade) = split(" ", $line);

$gr ades{$student} .= $grade . " ";
}

foreach $student (sort keys %grades) {
$scores = O;

11 $total = O;

12 @rades = split(" ", $grades{$student});

[EEN
QWO ~NOUGAWNPE

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

13 foreach $grade (@rades) {

14 $total += $grade;

15 $scor es++;

16 }

17 $average = $total / $scores;

18 print "$student: $grades{$student}\tAverage: $average\n";
19 }

Now before your eyes cross permanently, we'd better point out that this example demonstrates alot of
what we've covered so far, plus quite a bit more that we'll explain presently. But if you let your eyes go
just alittle out of focus, you may start to see some interesting patterns. Take some wild guesses now as to
what's going on, and then later on we'll tell you if you're right.

We'd tell you to try running it, but you may not know how yet.

1.3.1 How to Do It

Geg, right about now you're probably wondering how to run a Perl program. The short answer is that you
feed it to the Perl language interpreter program, which coincidentally happens to be named per| (note the
case distinction). The longer answer starts out like this: There's More Than One Way To Do It.[13]

[13] That's the Perl Slogan, and you'll get tired of hearing it, unless you're the Local Expert,
in which case you'll get tired of saying it. Sometimesit's shortened to TMTOWTDI,
pronounced "tim-toady". But you can pronounce it however you like. After all,
TMTOWTDI.

Thefirst way to invoke perl (and the way most likely to work on any operating system) isto smply call
perl explicitly from the command line. If you are on aversion of UNIX and you are doing something
fairly smple, you can use the -e switch (%in the following example represents a standard shell prompt,
so don't typeit):

% perl -e "print "Hello, world!\n";"'

On other operating systems, you may have to fiddle with the quotes some. But the basic principle is the
same: you're trying to cram everything Perl needs to know into 80 columns or so.[14]

[14] These types of scripts are often referred to as "one-liners". If you ever end up hanging
out with other Perl programmers, you'll find that some of us are quite fond of creating
intricate one-liners. Perl has occasionally been maligned as a write-only language because of
these shenanigans.

For longer scripts, you can use your favorite text editor (or any other text editor) to put all your
commands into afile and then, presuming you named the script gradation (not to be confused with
graduation), you'd say:

% perl gradation

You're still invoking the Perl interpreter explicitly, but at least you don't have to put everything on the
command line every time. And you don't have to fiddle with quotes to keep the shell happy.

The most convenient way to invoke a script isjust to name it directly (or click onit), and let the
operating system find the interpreter for you. On some systems, there may be ways of associating various
file extensions or directories with a particular application. On those systems, you should do whatever it is
you do to associate the Perl script with the Perl interpreter. On UNIX systems that support the #!
"shebang" notation (and most UNIX systems do, nowadays), you can make the first line of your script be
magical, so the operating system will know which program to run. Put aline resembling[15] line 1 of our

example into your program:

[15] If perl isn't in /usr/bin, you'll have to change the #! line accordingly.
#! [usr/ bi n/ per|

Then al you haveto say is
% gr adati on

Of course, this didn't work because you forgot to make sure the script was executabl e (see the manpage
for chmod(1))[16] and in your PATH. If itisn't in your PATH, you'll have to provide a complete

filename so that the operating system knows how to find your script. Something like

[16] Although Perl hasits share of funny notations, this one must be blamed on UNIX.
chmod(1) means you should refer to the manpage for the chmod command in section one of
your UNIX manual. If youtypeeither man 1 chnod orman -s 1 chnod (depending
on your flavor of UNIX), you should be able to find out all the interesting information your
system knows about the command chmod. (Of course, if your flavor of UNIX happensto be
"Not UNIX!" then you'll need to refer to your system's documentation for the equivalent
command, presuming you are so blessed. Y our chief consolation isthat, if an equivalent
command does exist, it will have a much better name than chmod.)

% ../ bin/gradation

Finally, if you are unfortunate enough to be on an ancient UNIX system that doesn't support the magic
#! line, or if the path to your interpreter islonger than 32 characters (a built-in limit on many systems),
you may be able to work around it like this:

#!'/bin/sh -- # perl, to stop | ooping
eval 'exec /usr/bin/perl -S $0 ${1+"$@}"
i f 0O

Some operating systems may require variants on this to deal with /bin/csh, DCL, COMMAND.COM, or
whatever happens to be your default command interpreter. Ask your Local Expert.

Throughout this book, well just use #! / usr/ bi n/ per| to represent all these notions and notations,
but you'll know what we really mean by it.

A random clue: when you write atest script, don't call your script test. UNIX systems have a built-in test
command, which will likely be executed instead of your script. Try try instead.

A not-so-random clue: while learning Perl, and even after you think you know what you're doing, we
suggest using the -w option, especially during development. This option will turn on all sorts of useful
and interesting warning messages, not necessarily in that order. Y ou can put the -w switch on the
shebang line, like this:

#!/usr/bin/perl -w

Now that you know how to run your own Perl program (not to be confused with the perl program), let's
get back to our example.

Previous: 1.2 Natural and Programming Next: 1.4
Artificial Languages Perl Filehandles
1.2 Natural and Artificial Book 1.4 Filehandles
Languages Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.3 A Grade C_hapter_l Next: 1.5
Example An Overview of Perl Operators

1.4 Filehandles

Unless you're using artificial intelligence to model a solipsistic philosopher, your program needs some
way to communicate with the outside world. In lines 3 and 4 of our grade example you'll see the word
GRADES, which exemplifies another of Perl's data types, the filehandle. A filehandle isjust aname you
giveto afile, device, socket, or pipe to help you remember which one you're talking about, and to hide
some of the complexities of buffering and such. (Internaly, filehandles are similar to streams from a
language like C++, or |/O channelsfrom BASIC.)

Filehandles make it easier for you to get input from and send output to many different places. Part of
what makes Perl a good glue language is that it can talk to many files and processes at once. Having nice
symbolic names for various external objectsisjust part of being a good glue language.[17]

[17] Some of the other things that make Perl a good glue language are: it's 8-bit clean, it's
embeddable, and you can embed other thingsin it via extension modules. It's concise, and
networks easily. It's environmentally conscious, so to speak. Y ou can invoke it in many
different ways (as we saw earlier). But most of all, the language itself isnot so rigidly
structured that you can't get it to "flow" around your problem. It comes back to that
TMTOWTDI thing again.

Y ou create a filehandle and attach it to afile by using the open function. open takes two parameters: the
filehandle and the filename you want to associate it with. Perl also gives you some predefined (and
preopened) filehandles. STDI Nisyour program's normal input channel, while STDOUT is your
program's normal output channel. And STDERR is an additional output channel so that your program can
make snide remarks off to the side while it transforms (or attempts to transform) your input into your
output.[18]

[18] These filehandles are typically attached to your terminal, so you can type to your
program and see its output, but they may also be attached to files (and such). Perl can give
you these predefined handles because your operating system already provides them, one
way or another. Under UNIX, processes inherit standard input, output, and error from their
parent process, typically a shell. One of the duties of a shell isto set up these 1/0O streams so
that the child process doesn't need to worry about them.

Since you can use the open function to create filehandles for various purposes (input, output, piping),

you need to be able to specify which behavior you want. As you would do on the UNIX command line,
you simply add characters to the filename.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

open(SESAME, "fil enane");

open(SESAME, "<fil enane");

open(SESAME, ">fil enane");

open(SESAME, ">>fil enane");

open(SESAME, "| out put - pi pe-command”);
open(SESAME, "I nput - pi pe-comand |");

read fromexisting file
(sanme thing, explicitly)

create file and wite to it

append to existing file

set up an output filter

set up an input filter

HHHHFHH

Asyou can see, the name you pick is arbitrary. Once opened, the filehandle SESAIVE can be used to
access thefile or pipe until it is explicitly closed (with, you guessed it, cl ose(SESAME)), or the
filehandle is attached to another file by a subsequent open on the same filehandle.[19]

[19] Opening an aready opened filehandle implicitly closes the first file, making it
inaccessible to the filehandle, and opens a different file. Y ou must be careful that thisis
what you really want to do. Sometimes it happens accidentally, like when you say

open($handl e, $fi | e), and $handl e happensto contain the null string. Be sure to
set $handl| e to something unique, or you'll just open anew file on the null filehandle.

Once you've opened afilehandle for input (or if you want to use STDI N), you can read aline using the
line reading operator, <>. Thisis also known as the angle operator, because of its shape. The angle
operator encloses the filehandle (<SESAME>) you want to read lines from.[20] An example using the

STDI Nfilehandle to read an answer supplied by the user would look something like this:

[20] The empty angle operator, <>, will read lines from all the files specified on the
command line, or STDI N, if none were specified. (Thisis standard behavior for many
UNIX filter programs.)

print STDOUT "Enter a nunber: "; # ask for a nunber
$nunber = <STDI N>; # input the nunber
print STDOUT "The nunber is $nunber\n"; # print the nunber

Did you see what we just slipped by you? What's the STDOUT doing in those print statements there?
WEell, that's one of the ways you can use an output filehandle. A filehandle may be supplied as the first
argument to the print statement, and if present, tells the output where to go. In this case, the filehandleis
redundant, because the output would have gone to STDOUT anyway. Much as STDI Nis the default for
input, STDOUT is the default for output. (In line 18 of our grade example, we left it out, to avoid
confusing you up till now.)

We also did something else to trick you. If you try the above example, you may notice that you get an
extra blank line. This happens because the read does not automatically remove the newline from your
input line (your input would be, for example, "9\ n"). For those times when you do want to remove the
newline, Perl providesthe chop and chomp functions. chop will indiscriminately remove (and return)

the last character passed to it, while chomp will only remove the end of record marker (generally, "\ n"),
and return the number of characters so removed. You'll often see thisidiom for inputting asingle line:

chop($nunber = <STDI N>); # i nput nunber and renove new i ne

which means the same thing as
$nunber = <STDI N>; # i nput nunber

chop($nunber) ; # renove new i ne

Previous: 1.3 A Grade Programming Next: 1.5
Example Perl Operators
1.3 A Grade Example Book 1.5 Operators
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.4 Chapter 1 | Next: 1.6 Control Structures|
Filehandles An Overview of Per|

1.5 Operators

Aswe aluded to earlier, Perl is also a mathematical language. Thisistrue at severa levels, from
low-level bitwise logical operations, up through number and set manipulation, on up to larger predicates
and abstractions of various sorts. And as we all know from studying math in school, mathematicians love
strange symbols. What's worse, computer scientists have come up with their own versions of these
strange symbols. Perl has a number of these strange symbols too, but take heart, most are borrowed
directly from C, FORTRAN, sed(1) or awk(1), so they'll at least be familiar to users of those languages.

Perl's built-in operators may be classified by number of operands into unary, binary, and trinary
operators. They may be classified by whether they're infix operators or prefix operators. They may also
be classified by the kinds of objects they work with, such as numbers, strings, or files. Later, well give
you atable of all the operators, but here are some to get you started.

1.5.1 Arithmetic Operators

Arithmetic operators do exactly what you would expect from learning them in school. They perform
some sort of mathematical function on numbers.

Table 1.2: Some Binary Arithmetic Operators

Example |Name Result

$a + $b |Addition Sum of $a and $b

$a * $b |Multiplication |Product of $a and $b

$a % $b |Modulus Remainder of $a divided by $b
$a ** $b |Exponentiation |$a to the power of $b

Y es, we left subtraction and division out of Table 1.2. But we suspect you can figure out how they should
work. Try them and see if you'reright. (Or cheat and look in the index.) Arithmetic operators are
evaluated in the order your math teacher taught you (exponentiation before multiplication, and
multiplication before addition). Y ou can always use parentheses to make it come out differently.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

1.5.2 String Operators

Thereisalso an "addition" operator for strings that does concatenation. Unlike some languages that
confuse this with numeric addition, Perl defines a separate operator (.) for string concatenation:

$a = 123;

$b = 456;

print $a + $b; # prints 579
print $a . $b; # prints 123456

There'salso a"multiply" operation for strings, also called the repeat operator. Again, it's a separate
operator (x) to keep it distinct from numeric multiplication:

$a = 123;

$b = 3;

print $a * $b; # prints 369

print $a x $b; # prints 123123123

These string operators bind as tightly as their corresponding arithmetic operators. The repeat operator is a
bit unusual in taking a string for itsleft argument but a number for its right argument. Note also how Perl
Is automatically converting from numbersto strings. Y ou could have put al the literal numbers above in
guotes, and it would still have produced the same output. Internally though, it would have been
converting in the opposite direction (that is, from strings to numbers).

A couple more things to think about. String concatenation is also implied by the interpolation that
happens in double-quoted strings. When you print out alist of values, you're also effectively
concatenating strings. So the following three statements produce the same output:

print $a . ' is equal to "' . $b . "\n"; # dot operator
print $a, ' is equal to ', $b, "\n"; # list
print "$a is equal to $b\n"; # interpolation

Which of these you use in any particular situation is entirely up to you.

The x operator may seem relatively worthless at first glance, but it is quite useful at times, especially for
things like this:

print "-" x $scrwid, "\n";

which draws aline across your screen, presuming your screen widthisin $scrw d.

1.5.3 Assignment Operators

Although it's not exactly a mathematical operator, we've already made extensive use of the smple
assignment operator, =. Try to remember that = means "gets set to" rather than "equals’. (Thereisalso a
mathematical equality operator == that means "equals’, and if you start out thinking about the difference
between them now, you'll save yourself alot of headache later.)

Like the operators above, assignment operators are binary infix operators, which means they have an
operand on either side of the operator. The right operand can be any expression you like, but the | eft
operand must be a valid Ivalue (which, when translated to English, means a valid storage location like a

variable, or alocation in an array). The most common assignment operator is simple assignment. It
determines the value of the expression on itsright side, and sets the variable on the left side to that value:

$a = $b;
$a = $b + 5;
$a = $a * 3;

Notice the last assignment refers to the same variable twice; once for the computation, once for the
assignment. There's nothing wrong with that, but it's a common enough operation that there's a shortcut
for it (borrowed from C). If you say:

| val ue operator= expression

itisevaluated asif it were:
| val ue = | val ue operat or expression

except that the lvalue is not computed twice. (This only makes a difference if evaluation of the lvalue has
side effects. But when it does make a difference, it usually does what you want. So don't sweat it.)

So, for example, you could write the above as.
$a *= 3;

which reads "multiply $a by 3". Y ou can do this with amost any binary operator in Perl, even some that
you can't do it within C:

$line .= "\n"; # Append newline to $line.
$fill x= 80; # Make string $fill into 80 repeats of itself.
$val || = "2"; # Set $val to 2 if it isn't already set.

Line 6 of our grade example contains two string concatenations, one of which is an assignment operator.
And line 14 containsa +=.

Regardless of which kind of assignment operator you use, the final value is returned as the value of the
assignment as awhole. (Thisisunlike, say, Pascal, in which assignment is a statement and has no value.)
Thisiswhy we could say:

chop($nunber = <STDI N>);
and have it chop the final value of $nunber . You also frequently see assignment as the condition of a
whileloop, asin line 4 of our grade example.

1.5.4 Autoincrement and Autodecrement Operators

Asif $vari abl e += 1 weren't short enough, Perl borrows from C an even shorter way to increment a
variable. The autoincrement and autodecrement operators simply add (or subtract) one from the value of
the variable. They can be placed on either side of the variable, depending on when you want them to be
evaluated (see Table 1.3).

Table 1.3: Unary Arithmetic Operators
|[Example |Name | Result

J
++$a, $a++ |Autoincrement |Add 1to $a

--%a, %$a-- |Autodecrement | Subtract 1 from $a

If you place one of the auto operators before the variable, it is known as a pre-incremented
(pre-decremented) variable. Its value will be changed before it is referenced. If it is placed after the
variable, it is known as a post-incremented (post-decremented) variable and its value is changed after it is
used. For example:

$a = 5; # $a is assigned 5
$b = ++%a; # $b is assigned the increnmented value of $a, 6
$c = %a--; # $c is assigned 6, then $a is decrenented to 5

Line 15 of our grade example increments the number of scores by one, so that we'll know how many
scores we're averaging the grade over. It uses a post-increment operator ($scor es++), but in this case it
doesn't matter, since the expression isin avoid context, which isjust afunny way of saying that the
expression is being evaluated only for the side effect of incrementing the variable. The value returned is
being thrown away.[21]

[21] The optimizer will notice this and optimize the post-increment into a pre-increment,
because that's a little more efficient to execute. (Y ou didn't need to know that, but we hoped

it would cheer you up.)

1.5.5 Logical Operators

Logical operators, also known as "short-circuit" operators, allow the program to make decisions based on
multiple criteria, without using nested conditionals. They are known as short-circuit because they skip
evaluating their right argument if evaluating their left argument is sufficient to determine the overal
value.

Perl actually has two sets of logical operators, a crufty old set borrowed from C, and a nifty new set of
ultralow-precedence operators that parse more like people expect them to parse, and are also easier to
read. (Once they're parsed, they behave identically though.) See Table 1.4 for examples of logical

operators.

Table 1.4: Logical Operators
Example Name | Result
$a & & $b |And |$aif $aisfase, $b otherwise
$a || $b |Or $a if $a istrue, $b otherwise

I $a Not |Trueif $a isnot true
$a and $b |And |$aif $aisfase $b otherwise
$a or $b |(Or $a if $a istrue, $b otherwise

not $a ’Not ’Trueif $a isnot true

Since the logical operators "short circuit" the way they do, they're often used to conditionally execute
code. The following line (from our grade example) tries to open the file grades.

open(GRADES, "grades") or die "Can't open file grades: $!'\n";

If it opensthefile, it will jump to the next line of the program. If it can't open thefile, it will provide us
with an error message and then stop execution.

Literally, the above message means "Open grades or die!" Besides being another example of natural
language, the short-circuit operators preserve the visual flow. Important actions are listed down the left
side of the screen, and secondary actions are hidden off to the right. (The $! variable contains the error
message returned by the operating system - see " Special Variables' in Chapter 2). Of course, these
logical operators can also be used within the more traditional kinds of conditional constructs, such asthe
if and while statements.

1.5.6 Comparison Operators

Comparison, or relational, operators tell us how two scalar values (numbers or strings) relate to each
other. There are two sets of operators - one does numeric comparison and the other does string
comparison. (In either case, the arguments will be "coerced" to have the appropriate type first.) Table 1.5

assumes $a and $b are the left and right arguments, respectively.

Table 1.5: Some Numeric and String Comparison Operators

Comparison Numeric [String [Return Value

Equal == eq Trueif $a isequal to $b

Not equal = ne Trueif $a isnot equal to $b

Lessthan < | t Trueif $a islessthan $b

Greater than > gt Trueif $a isgreater than $b

Less than or equal <= | e Trueif $a not greater than $b
Comparison <=> cnp |Oif equa, 1if $a greater, -1if $b greater

The last pair of operators (<=> and cnp) are entirely redundant. However, they're incredibly useful in
sort subroutines (see Chapter 3).[22]

[22] Some folks feel that such redundancy is evil because it keeps a language from being
minimalistic, or orthogonal. But Perl isn't an orthogonal language; it's a diagonal language.
By which we mean that Perl doesn't force you to always go at right angles. Sometimes you
just want to follow the hypotenuse of the triangle to get where you're going. TMTOWTDI is
about shortcuts. Shortcuts are about efficiency.

1.5.7 File Test Operators

Thefile test operators allow you to test whether certain file attributes are set before you go and blindly
muck about with the files. For example, it would be very nice to know that the file /etc/passwd already
exists before you go and open it as anew file, wiping out everything that was in there before. See Table

1.6 for examples of file test operators.

Table 1.6: Some File Test Operators
Example [Name Result

-e $a |Exists Trueif filenamed in $a exists
-r $a |Readable |Trueif filenamed in $a isreadable
-w $a |Writable |Trueif filenamed in $a iswritable

-d $a |Directory | Trueif file named in $a isadirectory

-f $a |File Trueif file named in $a isaregular file

-T $a |TextFile |Trueif filenamedin $a isatext file

Here are some examples:

-e "/usr/bin/perl” or warn "Perl is inproperly installed\n";
-f "/vmuni x" and print "Congrats, we seemto be running BSD Uni x\n";

Note that aregular file is not the same thing as atext file. Binary files like /vmunix are regular files, but
they aren't text files. Text files are the opposite of binary files, while regular files are the opposite of
irregular files like directories and devices.

There are alot of file test operators, many of which we didn't list. Most of the file tests are unary Boolean
operators: they take only one operand, a scalar that evaluatesto afile or afilehandle, and they return
either atrue or false value. A few of them return something fancier, like the file's size or age, but you can
look those up when you need them.

Previous: 1.4 Programming | Next: 1.6 Control Structures|
Filehandles Perl

1.4 Filehandles Book 1.6 Control Structures
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

% Programming Perl

Previous: 1.5 Chapter 1 Next: 1.7 Regular
Operators An Overview of Per| Expressions

1.6 Control Structures

So far, except for our one large example, all of our examples have been completely linear; we executed each
command in order. We've seen afew examples of using the short circuit operators to cause asingle
command to be (or not to be) executed. While you can write some very useful linear programs (alot of CGlI
scripts fall into this category), you can write much more powerful programs if you have conditional
expressions and looping mechanisms. Collectively, these are known as control structures. So you can also
think of Perl asacontrol language.

But to have control, you have to be able to decide things, and to decide things, you have to know the
difference between what's true and what's fal se.

1.6.1 What Is Truth?

We've bandied about the term truth,[23] and we've mentioned that certain operators return atrue or afalse

value. Before we go any further, we really ought to explain exactly what we mean by that. Perl treats truth a
little differently than most computer languages, but after you've worked with it awhile it will make alot of
sense. (Actually, we're hoping it'll make alot of sense after you've read the following.)

[23] Strictly speaking, thisis not true.

Basically, Perl holds truths to be self-evident. That's aglib way of saying that you can evaluate almost
anything for its truth value. Perl uses practical definitions of truth that depend on the type of thing you're
evaluating. As it happens, there are many more kinds of truth than there are of nontruth.

Truthin Perl isalways evaluated in a scalar context. (Other than that, no type coercion is done.) So here are
the rules for the various kinds of values that a scalar can hold:

1. Any string istrue except for" " and" 0" .
2. Any number istrue except for O.

3. Any referenceistrue.

4. Any undefined valueisfalse.

Actually, the last two rules can be derived from the first two. Any reference (rule 3) points to something with
an address, and would evaluate to a number or string containing that address, which is never 0. And any
undefined value (rule 4) would always evaluate to 0 or the null string.

Andinaway, you can derive rule 2 from rule 1 if you pretend that everything is a string. Again, no coercion

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

Is actually done to evaluate truth, but if a coercion to string were done, then any numeric value of 0 would
simply turninto the string " 0", and be false. Any other number would not turn into the string " 0" , and so
would be true. Let's ook at some examples so we can understand this better:

0 # woul d becone the string "0", so false

1 # woul d becone the string "1", so true

10 - 10 # 10-10 is 0, would convert to string "0", so false

0. 00 # beconmes 0, would convert to string "0", so false

"0" # the string "0", so false

" # a null string, so fal se

" 0. 00" # the string "0.00", neither enpty nor exactly "0", so true
"0.00" + O # the nunber 0O (coerced by the +), so fal se.

\ $a # a reference to $a, so true, even if $a is fal se

undef () # a function returning the undefined value, so false

Since we mumbled something earlier about truth being evaluated in a scalar context, you might be
wondering what the truth value of alist is. Well, the ssmple fact is, there is no operation in Perl that will
return alist in ascalar context. They al return ascalar value instead, and then you apply the rules of truth to
that scalar. So there's no problem, aslong as you can figure out what any given operator will returnin a
scalar context.

1.6.1.1 The if and unless statements

We saw earlier how alogic operator could function as a conditional. A slightly more complex form of the
logic operatorsistheif statement. The if statement evaluates atruth condition, and executes a block if the
condition istrue.

A block is one or more statements grouped together by a set of braces. Since the if statement executes a
block, the braces are required by definition. If you know alanguage like C, you'll notice that thisis different.
Braces are optional in C if you only have asingle line of code, but they are not optional in Perl.

i f ($debug level > 0) {
Sonet hi ng has gone wong. Tell the user.
print "Debug: Danger, WII Robinson, danger!\n";
print "Debug: Answer was '54', expected '42'.\n";
}

Sometimes, just executing a block when a condition is met isn't enough. Y ou may also want to execute a
different block if that condition isn't met. While you could certainly use two if statements, one the negation
of the other, Perl provides a more elegant solution. After the block, if can take an optional second condition,
called else, to be executed only if the truth condition is false. (Veteran computer programmers will not be
surprised at this point.)

Other times, you may even have more than two possible choices. In this case, you'll want to add an elsif truth
condition for the other possible choices. (Veteran computer programmers may well be surprised by the
spelling of "elsif", for which nobody here is going to apologize. Sorry.)
if ($city eq "New York") {

print "New York is northeast of Washington, D C \n";
}

elsif ($city eq "Chicago") {

print "Chicago is northwest of Washington, D.C\n";

}
elsif ($city eq "Mam ") {
print "Mam is south of Washington, D.C. And nuch warnmer!\n";

}
el se {

print "I don't know where $city is, sorry.\n";
}

Theif and elsif clauses are each computed in turn, until one is found to be true or the else condition is
reached. When one of the conditionsisfound to be true, its block is executed and all the remaining branches
are skipped. Sometimes, you don't want to do anything if the condition istrue, only if it isfalse. Using an
empty if with an else may be messy, and a negated if may beillegible; it sounds weird to say "“do something
If not thisistrue". In these situations, you would use the unless statement.

unl ess ($destination eq $hone) {
print "I'mnot going hone.\n";
}

Thereisno "elsunless’ though. Thisis generally construed as afeature.

1.6.2 Iterative (Looping) Constructs

Perl has four main iterative statement types. while, until, for, and foreach. These statements allow a Perl
program to repeatedly execute the same code for different values.

1.6.2.1 The while and until statements

The while and until statements function similarly to the if and unless statements, in alooping fashion. First,
the conditional part of the statement is checked. If the condition is met (if it istrue for awhile or false for an
until) the block of the statement is executed.

while ($tickets sold < 10000) {
$avail abl e = 10000 - $tickets_sold;
print "$available tickets are available. How many would you like: ";
$pur chase = <STDI N>;
chonp($pur chase) ;
$tickets sold += $purchase;

}

Note that if the original condition is never met, the loop will never be entered at al. For example, if we've
already sold 10,000 tickets, we might want to have the next line of the program say something like:
print "This showis sold out, please cone back |ater.\n";

In our grade example earlier, line 4 reads:
while ($line = <GRADES>) {
This assigns the next line to the variable $I | ne, and as we explained earlier, returns the value of $I i ne so

that the condition of the while statement can evaluate $I i ne for truth. Y ou might wonder whether Perl will
get afalse negative on blank lines and exit the loop prematurely. The answer isthat it won't. The reason is

clear, if you think about everything we've said. The line input operator leaves the newline on the end of the
string, so ablank line hasthevalue"\ n" . And you know that "\ n" is not one of the canonical false values.
So the condition is true, and the loop continues even on blank lines.

On the other hand, when we finally do reach the end of the file, the line input operator returns the undefined
value, which always evaluates to false. And the loop terminates, just when we wanted it to. There's no need
for an explicit test against the eof function in Perl, because the input operators are designed to work smoothly
in aconditional context.

In fact, almost everything is designed to work smoothly in a conditional context. For instance, an array in a
scalar context returns its length. So you often see:

while (@GARGV) {
process(shift @ARGV);
}

The loop automatically exits when @GARGV is exhausted.
1.6.2.2 The for statement

Another iterative statement isthe for loop. A for loop runs exactly like the while loop, but looks a good deal
different. (C programmerswill find it very familiar though.)

for ($sold = 0; $sold < 10000; $sold += S$purchase) {
$avail abl e = 10000 - $sol d;
print "$avail able tickets are available. How many would you |ike: ";
$pur chase = <STDI N>;
chonp($pur chase) ;

}

The for loop takes three expressions within the loop's parentheses: an expression to set the initial state of the
loop variable, a condition to test the loop variable, and an expression to modify the state of the loop variable.
When the loop starts, the initial state is set and the truth condition is checked. If the condition istrue, the
block is executed. When the block finishes, the modification expression is executed, the truth condition is
again checked, and if true, the block is rerun with the new values. Aslong as the truth condition remains
true, the block and the modification expression will continue to be executed.

1.6.2.3 The foreach statement

The last of Perl's main iterative statements is the for each statement. for each is used to execute the same
code for each of aknown set of scalars, such as an array:

foreach $user (@sers) {
if (-f "$home{$user}/.nexrc") {
print "$user is cool... they use a perl-aware vi!\n";
}

}

In aforeach statement, the expression in parentheses is evaluated to produce alist. Then each element of the
list is aliased to the loop variable in turn, and the block of code is executed once for each element. Note that
the loop variable becomes a reference to the element itself, rather than a copy of the element. Hence,
modifying the loop variable will modify the original array.

Y ou find many more for each loops in the typical Perl program than for loops, because it's very easy in Perl
to generate the lists that for each wants to iterate over. A frequently seen idiom isaloop to iterate over the
sorted keys of a hash:

foreach $key (sort keys %ash) {

In fact, line 9 of our grade example does precisely that.
1.6.2.4 Breaking out: next and last

The next and last operators allow you to modify the flow of your loop. It is not at all uncommon to have a

special case; you may want to skip it, or you may want to quit when you encounter it. For example, if you are
dealing with UNIX accounts, you may want to skip the system accounts (like root or Ip). The next operator

would alow you to skip to the end of your current loop iteration, and start the next iteration. The last

operator would allow you to skip to the end of your block, asif your test condition had returned false. This
might be useful if, for example, you are looking for a specific account and want to quit as soon as you find it.

foreach $user (@sers) {
if ($user eq "root" or $user eq "Ip") {
next ;
}

if ($user eq "special") {
print "Found the special account.\n";
do sone processing
| ast ;

}

It's possible to break out of multi-level loops by Iabeling your loops and specifying which loop you want to
break out of. Together with statement modifiers (another form of conditional we haven't talked about), this
can make for very readable loop exits, if you happen to think English is readable:

LINE: while ($line = <ARTI CLE>) {
last LINE if $line eq "\n"; # stop on first blank |ine
next LINE if $line =~ /~#/; # skip comment |ines
your ad here

}

Y ou may be saying, "Wait a minute, what's that funny ~# thing there inside the leaning toothpicks? That
doesn't look much like English." And you're right. That's a pattern match containing aregular expression
(albeit arather smple one). And that's what the next section is about. Perl is above all atext processing
language, and regular expressions are at the heart of Perl's text processing.

Previous: 1.5 Programming Next: 1.7 Regular
Operators Perl Expressions
1.5 Operators Book 1.7 Regular Expressions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

| Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.6 Control Ch .ter 1 Next: 1.8 List
Structures An Overview of Perl Processing

1.7 Regular Expressions

Regular expressions (aka regexps, regexes or RES) are used by many UNIX programs, such as grep, sed
and awk,[24] editorslike vi and emacs, and even some of the shells. A regular expression isaway of
describing a set of strings without having to list all the stringsin your set.

[24] A good source of information on regular expression concepts is the Nutshell Handbook
sed & awk by Dale Dougherty (O'Rellly & Associates). Y ou might also keep an eye out for
Jeffrey Friedl's forthcoming book, Mastering Regular Expressions (O'Rellly & Associates).

Regular expressions are used several waysin Perl. First and foremost, they're used in conditionalsto
determine whether a string matches a particular pattern. So when you see something that looks like
/ f oo/ , you know you're looking at an ordinary pattern-matching operator.

Second, if you can locate patterns within a string, you can replace them with something else. So when
you see something that looks like s/ f oo/ bar / , you know it's asking Perl to substitute "bar" for "foo",
if possible. We call that the substitution operator.

Finally, patterns can specify not only where something is, but also where it isn't. So the split operator
uses aregular expression to specify where the dataisn't. That is, the regular expression defines the
delimiters that separate the fields of data. Our grade example has a couple of trivial examples of this.
Lines 5 and 12 each split strings on the space character in order to return alist of words. But you can
split on any delimiter you can specify with aregular expression.

(There are various modifiers you can use in each of these situations to do exotic things like ignore case
when matching alphabetic characters, but these are the sorts of gory details that we'll cover in Chapter 2.)

The simplest use of regular expressionsisto match aliteral expression. In the case of the splits we just
mentioned, we matched on a single space. But if you match on several charactersin arow, they all have
to match sequentially. That is, the pattern looks for a substring, much as you'd expect. Let's say we want
to show all thelines of an HTML file that are links to other HTML files (as opposed to FTP links). Let's
imagine we're working with HTML for the first time, and we're being alittle naive yet. We know that
these links will always have "http:" in them somewhere. We could loop through our file with this:[25]

[25] Thisisvery similar to what the UNIX commandgrep ' http:' fil e woulddo.
On MS-DOS you could use the find command, but it doesn't know how to do more
complicated regular expressions. (However, the misnamed findstr program of Windows NT

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

does know about regular expressions.)

while ($line = <FILE>) {
if ($line =~ /http:/) {
print $line;
}

}

Here, the =~ (pattern binding operator) istelling Perl to look for a match of the regular expression

htt p: inthevariable $! i ne. If it finds the expression, the operator returns a true value and the block
(aprint command) is executed. By the way, if you don't use the =~ binding operator, then Perl will
search a default variable instead of $I i ne. This default spaceisreally just a special variable that goes
by the odd name of $. In fact, many of the operators in Perl default to using the $ _variable, so an expert
Perl programmer might write the above as:

while (<FILE>) {
print if /http:/;
}

(Hmm, another one of those statement modifiers seems to have snuck in there. Insidious little beasties.)

This stuff is pretty handy, but what if we wanted to find all the links, not just the HTTP links? We could
givealist of links, like"ht t p: ","ft p: ","mai | t o: ", and so on. But that list could get long, and what
would we do when a new kind of link was added?

while (<FILE>) {
print if /http:/;
print if /ftp:/;
print if /mailto:/;
What next?

}

Since regular expressions are descriptive of a set of strings, we can just describe what we are looking for:
anumber of alphabetic characters followed by a colon. In regular expression talk (Regexpese?), that
would be/ [a- zA- Z] +: / , where the brackets define a character class. Thea- z and A- Z represent all
a phabetic characters (the dash means the range of all characters between the starting and ending
character, inclusive). And the + isa special character which says "one or more of whatever was before
me". It'swhat we call aquantifier, meaning a gizmo that says how many times something is allowed to
repeat. (The slashes aren't really part of the regular expression, but rather part of the pattern match
operator. The slashes are acting like quotes that just happen to contain aregular expression.)

Because certain classes like the al phabetics are so commonly used, Perl defines special cases for them.
See Table 1.7 for these special cases.

Table 1.7: Regular Expression Character
Classes

Name Definition Code
Whitespace [\t\n\r\f] |[\s

Word character |[a- zA-Z _0-9] |\w
Digit [0- 9] \d

Note that these match single characters. A \ wwill match any single word character, not an entire word.
(Remember that + quantifier? Y ou can say \ w+ to match aword.) Perl also provides the negation of
these classes by using the uppercased character, such as\ D for a non-digit character.

(We should note that \ wis not alwaysequivalentto[a- zA- Z_0- 9] . Some locales define additional
alphabetic characters outside the ASCII sequence, and \ w respects them.)

Thereis one other very special character class, written witha". ", that will match any character
whatsoever.[26] For example, / a. / will match any string containing an "a" that is not the last character
in the string. Thusit will match "at " or "ani' or even "a+", but not "a", since there's nothing after the
"a" for the dot to match. Sinceit's searching for the pattern anywhere in the string, it'll match "oasi s
and "canel ", but not "sheba". It matches"car avan" on thefirst "a". It could match on the second
"a", but it stops after it finds the first suitable match, searching from left to right.

[26] Except that it won't normally match a newline. When you think about it, a". " doesn't
normally match anewlinein grep(1) either.

1.7.1 Quantifiers

The characters and character classes we've talked about al match single characters. We mentioned that
you could match multiple "word" characters with \ w+ in order to match an entire word. The + isone
kind of quantifier, but there are others. (All of them are placed after the item being quantified.)

The most general form of quantifier specifies both the minimum and maximum number of times an item
can match. Y ou put the two numbers in braces, separated by a comma. For example, if you were trying to
match North American phone numbers, /\ d{ 7, 11}/ would match at least seven digits, but no more
than eleven digits. If you put a single number in the braces, the number specifies both the minimum and
the maximum; that is, the number specifies the exact number of times the item can match. (If you think
about it, all unquantified items have an implicit { 1} quantifier.)

If you put the minimum and the comma but omit the maximum, then the maximum is taken to be
infinity. In other words, it will match at least the minimum number of times, plus as many asit can get
after that. For example, / \ d{ 7}/ will only match aloca (North American) phone number (7 digits),
while/\ d{ 7, }/ will match any phone number, even an international one (unless it happens to be
shorter than 7 digits). Thereis no special way of saying "at most" a certain number of times. Just say
/. {0, 5}/, for example, to find at most five arbitrary characters.

Certain combinations of minimum and maximum occur frequently, so Perl defines special quantifiers for
them. We've aready seen +, which isthesameas{ 1, } , or "at least one of the preceding item". Thereis
aso*,whichisthesameas{ 0, }, or “zero or more of the preceding item", and ?, which isthe same as
{0, 1}, or "zero or one of the preceding item" (that is, the preceding item is optional).

There are a coupl e things about quantification that you need to be careful of. First of all, Perl quantifiers
are by default greedy. This means that they will attempt to match as much as they can aslong as the

entire expression still matches. For example, if you are matching / \ d+/ against “1234567890", it will
match the entire string. This is something to especially watch out for when you areusing . ", any
character. Often, someone will have a string like:

spp: Fe+H20=FeQ2; H: 2112: 100: St ephen P Potter:/hone/ spp:/bin/tcsh

and try to match "spp: " with/ . +: / . However, since the + quantifier is greedy, this pattern will match
everything up to and including "/ hone/ spp: ". Sometimes you can avoid this by using a negated
character class, that is, by saying/ [~:] +: / , which says to match one or more non-colon characters (as
many as possible), up to thefirst colon. It's that little caret in there that negates the sense of the character
class.[27] The other point to be careful about is that regular expressions will try to match as early as
possible. This even takes precedence over being greedy. Since scanning happens left-to-right, this means
that the pattern will match asfar left as possible, even if there is some other place where it could match
longer. (Regular expressions are greedy, but they aren't into delayed gratification.) For example, suppose
you're using the substitution command (s/ / /') on the default variable space (variable $, that is), and
you want to remove a string of x's from the middle of the string. If you say:

[27] Sorry, we didn't pick that notation, so don't blame us. That's just how regular
expressions are customarily written in UNIX culture.

$_ = "fred xxxxxxx barney";
s/ x*I1;

it will have absolutely no effect. Thisis because the x* (meaning zero or more "x" characters) will be
able to match the "nothing" at the beginning of the string, since the null string happensto be zero
characters wide and there's anull string just sitting there plain as day beforethe"f " of "f r ed".[28]

[28] Even the authors get caught by this from time to time.

There's one other thing you need to know. By default quantifiers apply to a single preceding character, so
/ ban{ 2} / will match "banmm' but not "banbani'. To apply a quantifier to more than one character, use
parentheses. So to match "banbant', use the pattern/ (bam) { 2}/ .

1.7.2 Minimal Matching

If you were using an ancient version of Perl and you didn't want greedy matching, you had to use a
negated character class. (And really, you were still getting greedy matching of a constrained variety.)

In modern versions of Perl, you can force nongreedy, minimal matching by use of a question mark after
any quantifier. Our same username match would now be/ . *?: /. That . * ? will now try to match as
few characters as possible, rather than as many as possible, so it stops at the first colon rather than the
last.

1.7.3 Nailing Things Down

Whenever you try to match a pattern, it's going to try to match in every location till it finds a match. An
anchor allows you to restrict where the pattern can match. Essentially, an anchor is something that
matches a " nothing", but a special kind of nothing that depends on its surroundings. Y ou could also call it
arule, or aconstraint, or an assertion. Whatever you care to call it, it tries to match something of zero

width, and either succeeds or fails. (If it fails, it merely means that the pattern can't match that particular
way. The pattern will go on trying to match some other way, if there are any other waysto try.)

The special character string \ b matches at aword boundary, which is defined as the "nothing" between a
word character (\ w) and anon-word character (\ W, in either order. (The characters that don't exist off
the beginning and end of your string are considered to be non-word characters.) For example,

/'\ bFr ed\ b/

would match both"The Great Fred"and"Fred the G eat", but would not match
"Frederick the G eat" becausethe"de" in"Fr ederi ck" doesnot contain aword boundary.

Inasimilar vein, there are also anchors for the beginning of the string and the end of the string. If it isthe
first character of a pattern, the caret (") matches the "nothing" at the beginning of the string. Therefore,
the pattern/ ~Fr ed/ would match "Frederick the Great" and not "The Great Fred", whereas/ Fr ed”™/
wouldn't match either. (In fact, it doesn't even make much sense.) The dollar sign ($) works like the
caret, except that it matches the "nothing” at the end of the string instead of the beginning.[29]

[29] Thisisabit oversimplified, since we're assuming here that your string contains only
oneline.™ and $ are actually anchors for the beginnings and endings of lines rather than
strings. We'll try to straighten this all out in Chapter 2 (to the extent that it can be

straightened out).

So now you can probably figure out that when we said:
next LINE if $line =~ [#/,

we meant "Go to the next iteration of L1 NE loop if this line happens to begin with a# character.”

1.7.4 Backreferences

We mentioned earlier that you can use parentheses to group things for quantifiers, but you can also use
parentheses to remember bits and pieces of what you matched. A pair of parentheses around a part of a
regular expression causes whatever was matched by that part to be remembered for later use. It doesn't
change what the part matches, so/\ d+/ and/ (\ d+)/ will still match as many digits as possible, but
in the latter case they will be remembered in a special variable to be backreferenced | ater.

How you refer back to the remembered part of the string depends on where you want to do it from.
Within the same regular expression, you use a backslash followed by an integer. The integer
corresponding to agiven pair of parentheses is determined by counting left parentheses from the
beginning of the pattern, starting with one. So for example, to match something similar to an HTML tag
(like"Bol d</ B>", you might use/ <(. *?) >. *?<\/\ 1>/ . Thisforces the two parts of the
pattern to match the exact same string, such asthe "B" above.

Outside the regular expression itself, such as in the replacement part of a substitution, the special variable
Isused asif it were anormal scalar variable named by the integer. So, if you wanted to swap the first two
words of astring, for example, you could use:

s/ (\S+)\s+(\S+)/ $2 $1/
The right side of the substitution isreally just a funny kind of double-quoted string, which iswhy you

can interpolate variables there, including backreference variables. Thisis a powerful concept:
interpolation (under controlled circumstances) is one of the reasons Perl is a good text-processing
language. The other reason is the pattern matching, of course. Regular expressions are good for picking
things apart, and interpolation is good for putting things back together again. Perhaps there's hope for
Humpty Dumpty after all.

Previous: 1.6 Control Programming Next: 1.8 List
Structures Perl Processing
1.6 Control Structures Book 1.8 List Processing
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.7 Regular Ch .ter 1 Next: 1.9 What You Don't
Expressions An Overview of Per| Know Won't Hurt You (Much)

1.8 List Processing

Much earlier in this chapter, we mentioned that Perl has two main contexts, scalar context (for dealing
with singular things) and list context (for dealing with plural things). Many of the traditional operators
we've described so far have been strictly scalar in their operation. They always take singular arguments
(or pairs of singular arguments for binary operators), and always produce a singular result, evenin alist
context. So if you write this:

@rray = (1 +2, 3- 4, 5* 6, 7/ 8);

you know that the list on the right side contains exactly four values, because the ordinary math operators
always produce scalar values, even in the list context provided by the assignment to an array.

However, other Perl operators can produce either ascalar or alist value, depending on their context.
They just "know" whether ascalar or alist is expected of them. But how will you know that? It turns out
to be pretty easy to figure out, once you get your mind around a few key concepts.

First, list context has to be provided by something in the "surroundings’. In the example above, the list
assignment providesit. If you look at the various syntax summaries scattered throughout Chapter 2 and

Chapter 3, you'll see various operatorsthat are defined to takea Ll ST as an argument. Those are the

operators that provide alist context. Throughout this book, L1 ST is used as a specific technical term to
mean "a syntactic construct that provides alist context". For example, if you look up sort, you'll find the

Syntax summary:
sort LIST

That means that sort provides alist context to its arguments.

Second, at compile time, any operator that takesa Ll ST provides alist context to each syntactic element
of that LI ST. So every top-level operator or entity inthe LI ST knows that it's supposed to produce the
best list it knows how to produce. This meansthat if you say:

sort @uys, @als, other();
then each of @uys, @al s, and ot her () knowsthat it's supposed to produce alist value.

Finally, at run-time, each of those L1 ST elements producesitslist in turn, and then (thisis important) all
the separate lists are joined together, end to end, into asinglelist. And that squashed-flat,
one-dimensional list iswhat is finally handed off to the function that wanted a LI ST in thefirst place. So
if @uys contains (Fr ed, Bar ney) , @al s contains(W | ma, Betty), andtheot her () function

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

returns the single-element list (Di no) , thenthe LI ST that sort seesis
(Fred, Barney, WIl ma, Betty, D no)

andthe LI ST that sort returnsis
(Bar ney, Betty, Di no, Fred, W1 ma)

Some operators produce lists (like keys), some consume them (like print), and some transform lists into
other lists (like sort). Operatorsin the last category can be considered filters; only, unlike in the shell, the
flow of dataisfrom right to left, since list operators operate on their arguments passed in from the right.
Y ou can stack up severa list operatorsin arow:

print reverse sort map {lc} keys %hash;

That takes the keys of %hash and returns them to the map function, which lowercases all the keys by
applying the |c operator to each of them, and passes them to the sort function, which sorts them, and

passes them to the r ever se function, which reverses the order of the list elements, and passes them to the
print function, which prints them.

Asyou can see, that's much easier to describe in Perl than in English.

Previous: 1.7 Regular Programming Next: 1.9 What You Don't
Expressions Perl Know Won't Hurt You (Much)
1.7 Regular Expressions Book 1.9 What Y ou Don't Know
Index Won't Hurt You (Much)

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

| Previous: 1.8 List Processing] Chapter 1 Next: 2. The
An Overview of Per| Gory Details

1.9 What You Don't Know Won't Hurt You (Much)

Finally, alow usto return once more to the concept of Perl as a natural language. Speakers of a natural
language are allowed to have differing skill levels, to speak different subsets of the language, to learn as
they go, and generally, to put the language to good use before they know the whole language. Y ou don't
know all of Perl yet, just as you don't know all of English. But that's Officially Okay in Perl culture. Y ou
can work with Perl usefully, even though we haven't even told you how to write your own subroutines
yet. We've scarcely begun to explain how to view Perl as a system management language, or arapid
prototyping language, or a networking language, or an object-oriented language. We could write chapters
about some of these things. (Come to think of it, we aready did.)

But in the end, you must create your own view of Perl. It's your privilege as an artist to inflict the pain of
creativity on yourself. We can teach you how we paint, but we can't teach you how you paint. There's
More Than One Way To Do It.

Have the appropriate amount of fun.

| Previous: 1.8 List Processing| Programming Next: 2. The
Perl Gory Details

1.8 List Processing Book 2. The Gory Details
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 1.9 What You Don't Chapter 2 [Next: 2.2 Built-in Data Types]
Know Won't Hurt You (Much)

2. The Gory Detalls

Contents:
Lexical Texture

Built-in Data Types

Terms

Pattern Matching

Operators

Statements and Declarations
Subroutines

Formats

Specia Variables

This chapter describes in detail the syntax and semantics of a Perl program. Individual Perl functions are
described in Chapter 3, Functions, and certain specialized topics such as References and Objects are

deferred to later chapters.

For the most part, this chapter is organized from small to large. That is, we take a bottom-up approach.
The disadvantage is that you don't necessarily get the Big Picture before getting lost in awelter of detalils.
But the advantage is that you can understand the examples as we go along. (If you're a top-down person,
just turn the book over and read the chapter backward.)

2.1 Lexical Texture

Perl is, for the most part, a free-form language. The main exceptions to this are for mat declarations and

guoted strings, because these are in some senses literals. Comments are indicated by the # character and
extend to the end of theline.

Perl is defined in terms of the ASCII character set. However, string literals may contain characters
outside of the ASCII character set, and the delimiters you choose for various quoting mechanisms may
be any non-al phanumeric, non-whitespace character.

Whitespace is required only between tokens that would otherwise be confused as a single token. Al
whitespace is equivalent for this purpose. A comment counts as whitespace. Newlines are distinguished

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

from spaces only within quoted strings, and in formats and certain line-oriented forms of quoting.

One other lexical oddity isthat if aline begins with = in a place where a statement would be legal, Perl
ignores everything from that line down to the next line that says =cut . The ignored text is assumed to be
POD, or plain old documentation. (The Perl distribution has programs that will turn POD commentary
into manpages, LaTeX, or HTML documents.)

Previous: 1.9 What You Don't Programming [Next: 2.2 Built-in Data Types|
Know Won't Hurt You (Much) Perl
1.9 What Y ou Don't Know Book 2.2 Built-in Data Types
Won't Hurt Y ou (Much) Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

| Previous: 2.1 Lexical Texture| Chapter 2 Next: 2.3
The Gory Details Terms

2.2 Built-in Data Types

Computer languages vary in how many and what kinds of data types they provide at compile time.
Unlike some commonly used languages that provide many types for similar kinds of values, Perl
providesjust afew built-in data types. (Y ou can, however, define fancy dynamic types viathe
object-oriented features of Perl - see Chapter 5, Packages, Modules, and Object Classes.) Perl has three

basic data types: scalars, arrays of scalars, and hashes of scalars, also known as associative arrays.

Scalars are the fundamental type from which more complicated structures are built. A scalar stores a
single, ssimple value, typically astring or a number. Elements of this simple type can be combined into
either of the two composite types. An array is an ordered list of scalars that you access with a numeric
subscript (subscripts start at 0).[1] A hash is an unordered set of key/value pairs that you access using
strings (keys) as subscripts, to look up the scalar value corresponding to agiven key. Variables are
always one of these three types. (Other than variables, Perl also has some partially hidden thingies called
filehandles, directory handles, subroutines, typeglobs, and formats, which you can think of as data types.)

[1] Asin C, all of Perl'sindexing starts with zero. (A negative subscript counts from the end,
though.) This applies to various substring and sublist operations as well as to regular

subscripting.
| Previous: 2.1 Lexical Texture| Programming Next: 2.3
Perl Terms
2.1 Lexical Texture Book 2.3 Terms
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.2 Built-in Data Chapter 2 | Next: 2.4 Pattern Matching]
Types The Gory Details
2.3 Terms

Now that we've talked about the kinds of data you can represent in Perl, we'd like to introduce you to the
various kinds of terms you can use to pull that datainto expressions. We'll use the technical term term
when we want to talk in terms of these syntactic units. (Hmm, this could get confusing.) Thefirst terms
we'll talk about are variables.

2.3.1 Variables

There are variable types corresponding to each of the three data types we mentioned. Each of theseis
introduced (grammatically speaking) by what we call a"funny character". Scalar variables are always
named with an initial $, even when referring to a scalar that is part of an array or hash. It works a bit like
the English word "the". Thus, we have:

Construct M eaning

$days Simple scalar value $day's

$days|[28] 29th element of array @lays

$days{' Feb'} |"Feb" vauefrom hash %gdays

$#days Last index of array @lays

$days- >[28] |29th element of array pointed to by reference $days

Entire arrays or array dlices (and also slices of hashes) are named with @ which works much like the words
"these" or "those":

Construct M eaning

@lays Sameas($days[0], $days[1l],... S$days[n])
@lays[3, 4, 5] Sameas($days[3], $days[4], $days[5])
@lays|[3. . 5] Sameas($days[3], $days[4], $days[5])
@lays{' Jan',' Feb'} |Sameas($days{' Jan'}, $days{' Feb'})

Entire hashes are named by %

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

Construct | Meaning
Y%days (Jan => 31, Feb => $leap ? 29 : 28, ...)

Any of these nine constructs may serve as an lvalue, that is, they specify alocation that you could assign a
value to, among other things.[2]

[2] Assignment itself isan Ivaluein certain contexts - see examples under ///, tr///, chop, and
chomp in Chapter 3.

In addition, subroutine calls are named with an initial &, although thisis optional when it's otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an initial
* , but you don't really care about that yet.

Every variable type has its own namespace. Y ou can, without fear of conflict, use the same name for a
scalar variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, alabel, or your pet
llama). This means that $f oo and @ oo are two different variables. It also means that $f oo[1] isan
element of @ 00, not a part of $f 00. This may seem a bit weird, but that's okay, because it is weird.

Since variable names always start with $, @ or % the reserved words can't conflict with variable names.
But they can conflict with nonvariable identifiers, such as labels and filehandles, which don't have an initia
funny character. Since reserved words are aways entirely lowercase, we recommend that you pick |abel
and filehandle names that do not appear all in lowercase. For example, you could say

open(LQOG "I ogfile') rather than theregrettable open(| og, ' | ogfi |l e') .[3] Using uppercase
filehandles also improves readability and protects you from conflict with future reserved words.

[3] Regrettable because | og is a predefined function returning the base e logarithm of its
argument, or of $__ if itsargument ismissing, asit isin this case.

Caseissignificant - FOO, Foo and f oo are all different names. Names that start with aletter or underscore
may be of any length (well, 255 characters, at least) and may contain letters, digits, and underscores.

Names that start with adigit may only contain more digits. Names that start with anything else are limited
to that one character (like $? or 3), and generally have a predefined significance to Perl. For example, just
asin the Bourne shell, $$ is the current process ID and $? the exit status of your last child process.

Sometimes you want to name something indirectly. It is possible to replace an alphanumeric name with an
expression that returns areference to the actual variable (see Chapter 4, References and Nested Data

Structures).

2.3.2 Scalar Values

Whether it's named directly or indirectly, or isjust atemporary value on a stack, a scalar always contains a
single value. This value may be a number,[4] astring,[5] or areference to another piece of data. (Or there

may be no value at all, in which case the scalar is said to be undefined.) While we might speak of a scalar
as "containing" anumber or astring, scalars are essentially typeless; there's no way to declare a scalar to be
of type "number" or "string". Perl converts between the various subtypes as needed, so you can treat a
number as a string or a string as a number, and Perl will do the Right Thing.[6]

[4] Perl stores numbers as signed integers if possible, or as double-precision floating-point
values in the machine's native format otherwise. Floating-point values are not infinitely
precise. Thisis very important to remember, since comparisonslike (10/ 3 == 1/ 3*10)
tend to fail mysteriously.

[5] Perl stores strings as sequences of bytes, with no arbitrary constraints on length or content.
In human terms, you don't have to decide in advance how long your strings are going to get,
and you can include any characters including null characters within your string.

[6] To convert from string to number, Perl uses C's atof(3) function. To convert from number
to string, it does the equivalent of an sprintf(3) with aformat of " % 149" on most machines.

While strings and numbers are interchangeable for nearly all intents and purposes, references are a bit
different. They're strongly typed, uncastabl €] 7] pointers with built-in reference-counting and destructor
invocation. Y ou can use them to create complex data types, including user-defined objects. But they're till
scalars, for al that. See Chapter 4 for more on references.

[7] By which we mean that you can't, for instance, convert areference to an array into a
reference to a hash. References are not castable to other pointer types. However, if you use a
reference as a number or astring, you will get anumeric or string value, which is guaranteed
to retain the uniqueness of the reference even though the "referenceness’ of the value islost
when the value is copied from the real reference. Y ou can compare such values or test whether
they are defined. But you can't do much else with the values, since there's no way to convert
numbers or strings into references. In general thisis not a problem, since Perl doesn't force
you to do pointer arithmetic - or even alow it.

2.3.2.1 Numeric literals

Numeric literals are specified in any of several customary[8] floating point or integer formats:

[8] Customary in UNIX culture, that is. If you're from a different culture, welcome to ours!

12345 # i nteger

12345. 67 # floating point

6. 02E23 # scientific notation
Oxffff # hexadeci nal

0377 # oct al

4 294 967 296 # underline for legibility

Since Perl uses the comma as a list separator, you cannot use it to delimit the triplesin alarge number. To
improve legibility, Perl does allow you to use an underscore character instead. The underscore only works
within literal numbers specified in your program, not for strings functioning as numbers or data read from
somewhere else. Similarly, the leading Ox for hex and O for octal work only for literals. The automatic
conversion of a string to a number does not recogni ze these prefixes - you must do an explicit
conversion[9] with the oct function (which works for hex-looking data, too, asit happens).

[9] Sometimes people think Perl should convert al incoming data for them. But there are far
too many decimal numbers with leading zeroes in the world to make Perl do this
automatically. For example, the zip code for O'Rellly & Associates office in Cambridge, MA
1S02140. The postmaster would get upset if your mailing label program turned 02140 into

1120 decimal.
2.3.2.2 String literals

String literals are usually delimited by either single or double quotes. They work much like UNIX shell
guotes. double-quoted string literals are subject to backslash and variable interpolation; single-quoted
strings are not (except for\ ' and\ \ , so that you can put single quotes and backslashes into single-quoted
strings).

Y ou can also embed newlines directly in your strings; that is, they can begin and end on different lines.
Thisis nice for many reasons, but it also means that if you forget a trailing quote, the error will not be
reported until Perl finds another line containing the quote character, which may be much further onin the
script. Fortunately, this usually causes an immediate syntax error on the same line, and Perl is then smart
enough to warn you that you might have arunaway string.

Note that a single-quoted string must be separated from a preceding word by a space, since asingle quoteis
avalid (though deprecated) character in an identifier; see Chapter 5.

With double-quoted strings, the usual C-style backslash rules apply for inserting characters such as
newline, tab, and so on. Y ou may also specify charactersin octal and hexadecimal, or as control characters:

Code |Meaning

\n Newline

\r Carriage return

\ 't Horizontal tab

\ f Form feed

\'b Backspace

\a |Alert (bell)

\e ESC character

\ 033 |[ESCinoctd

\ x7f |DEL in hexadecimal
\cC |Control-C

In addition, there are escape sequences to modify the case of subsequent characters, as with the substitution
operator in the vi editor:

Code [Meaning

\u | Force next character to uppercase.

\ Force next character to lowercase.

\ U |Forceall following characters to uppercase.

\L |Forceadll following charactersto lowercase.

| |
\ Q |Backdash all following non-alphanumeric characters.

\E |End\U\L,or\Q

Besides the backslash escapes listed above, double-quoted strings are subject to variable interpolation of
scalar and list values. This means that you can insert the values of certain variables directly into a string
literal. It'sreally just a handy form of string concatenation. Variable interpolation may only be done for
scalar variables, entire arrays (but not hashes), single elements from an array or hash, or slices (multiple
subscripts) of an array or hash. In other words, you may only interpolate expressions that begin with $ or @
because those are the two characters (along with backslash) that the string parser looks for.[10] Although a
complete hash specified with a %may not be interpolated into the string, single hash values and hash slices
are okay, because they begin with $ and @respectively.

[10] Inside strings aliteral @that is not part of an array or dice identifier must be escaped with
abackdlash (\ @, or else acompilation error will result. See Chapter 9, Diagnostic M essages.

The following code segment printsout: "The price is $100."

$Price = '$100"; # not interpolated
print "The price is $Price.\n"; # interpol ated

Asin some shells, you can put braces around the identifier to distinguish it from following a phanumerics:
"How ${ver b} abl e! ".Infact, anidentifier within such bracesis forced to be a string, asisany single
identifier within a hash subscript. For example:

$days{' Feb'}

can be written as:
$days{ Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression.

Apart from the subscripts of interpolated array and hash variables, there are no multiple levels of
interpolation. In particular, contrary to the expectations of shell programmers, backquotes do not
interpolate within double quotes, nor do single quotes impede evaluation of variables when used within
double quotes.

2.3.2.3 Pick your own quotes

While we usually think of quotes as literal values, in Perl they function more like operators, providing
various kinds of interpolating and pattern matching capabilities. Perl provides the customary quote
characters for these behaviors, but also provides away for you to choose your quote character for any of
them.

Customary |Generic |Meaning I nter polates
ql / Literal No
qaq/ / Literal Yes

gx// Command Yes
() gqw / Word list No
/1 m / Pattern match | Yes
s/l s/l Substitution |Yes
yl I tr/// |Trandation [No

Some of these are simply forms of "syntactic sugar” to let you avoid putting too many backslashes into
guoted strings. Any non-alphanumeric, non-whitespace delimiter can be used in place of / .[11] If the
delimiters are single quotes, no variable interpolation is done on the pattern. If the opening delimiter isa
parenthesis, bracket, brace, or angle bracket, the closing delimiter will be the matching construct.
(Embedded occurrences of the delimiters must match in pairs.) Examples:

[11] In particular, the newline and space characters are not alowed as delimiters. (Ancient
versions of Perl allowed this.)
$single = q!l said, "You said, 'She said it.'"!;
$double = qg(Can't we get sonme "good" $vari abl e?);
$chunk_of code = q {
i f ($condition) {
print "CGotcha!";
}

H

Findly, for two-string constructs likes/ // andtr///,if thefirst pair of quotesis a bracketing pair, then
the second part gets its own starting quote character, which needn't be the same as the first pair. So you can
writethingslikes{f oo} (bar) ortr[a-z] [A Z] . Whitespace is allowed between the two inner quote
characters, so you could even write that |ast one as:
tr [a-2z]

[A-Z];

2.3.2.4 Or |leave the quotes out entirely

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These
are known as barewords.[12] For example:

[12] Aswith filehandles and labels, a bareword that consists entirely of lowercase letters risks
conflict with future reserved words. If you use the -w switch, Perl will warn you about

barewords.
@lays = (Mon, Tue, Wd, Thu, Fri);
print STDOUT hello, ' ', world, "\n";

setsthe array @lay's to the short form of the weekdays and printshel | o wor | d followed by anewline
on STDQOUT. If you leave the filehandle out, Perl triesto interpret hel | o asafilehandle, resultingin a
syntax error. Because thisis so error-prone, some people may wish to outlaw barewords entirely. If you

Say'.

use strict 'subs';

then any bareword that would not be interpreted as a subroutine call produces a compile-time error instead.
The restriction lasts to the end of the enclosing block. Aninner block may countermand this by saying:

no strict 'subs';

Note that the bare identifiers in constructs like:
"${ver b} abl e"
$days{ Feb}

are not considered barewords, since they're allowed by explicit rule rather than by having "no other
Interpretation in the grammar".

2.3.2.5 Interpolating array values

Array variables are interpolated into double-quoted strings by joining all the elements of the array with the
delimiter specified inthe $" variable[13] (which is a space by default). The following are equivalent:

[13] $LI ST_SEPARATORif you use the English library module. See Chapter 7, The Standard

Perl Library.

$temp = join($", G\RGV) ;
print $tenp;

print "@\RG/;

Within search patterns (which also undergo double-quotish interpolation) there is a bad ambiguity: Is

| $f oo[bar]/ tobeinterpreted as/ ${f oo} [bar]/ (where[bar] isacharacter classfor the regular
expression) or as/ ${ f oo[bar]}/ (where[bar] isthe subscript to array @ 00)? If @ oo doesn't
otherwise exist, then it's obviously a character class. If @ 00 exists, Perl takes agood guess about [bar] ,
and isamost always right.[14] If it does guess wrong, or if you're just plain paranoid, you can force the

correct interpretation with braces as above. Even if you're merely prudent, it's probably not a bad idea.

[14] The guesser istoo boring to describe in full, but basically takes a weighted average of all
the things that look like character classes (a- z, \w, initial *) versus things that ook like
expressions (variables or reserved words).

2.3.2.6 "Here" documents

A line-oriented form of quoting is based on the shell's here-document syntax.[15] Following a<< you
specify a string to terminate the quoted material, and all lines following the current line down to the
terminating string are quoted. The terminating string may be either an identifier (aword), or some quoted
text. If quoted, the type of quote you use determines the treatment of the text, just asin regular quoting. An
unquoted identifier works like double quotes. There must be no space between the << and the identifier. (If
you insert a space, it will be treated as a null identifier, which isvalid but deprecated, and matches the first
blank line - seethe first Hur r ah! example below.) The terminating string must appear by itself (unquoted
and with no surrounding whitespace) on the terminating line.

[15] It's line-oriented in the sense that delimiters are lines rather than characters. The starting

delimiter isthe current line, and the terminating delimiter is aline consisting of the string you

Specify.
print <<ECF; # sanme as earlier exanple
The price is $Price.
ECF
print <<"ECF"; # sane as above, with explicit quotes
The price is $Price.
ECF
print << EOF ; # singl e-quoted quote

Al things (e.g. a canel's journey through

A needle's eye) are possible, it's true.

But picture how the canel feels, squeezed out

In one I ong bloody thread, fromtail to snout.
-- CS. Lews

ECF

print << x 10; # print next line 10 tines
The canels are com ng! Hurrah! Hurrah!

print <<"" x 10; # the preferred way to wite that
The canels are com ng! Hurrah! Hurrah!

print << EOC ; # execute commands
echo hi there
echo o there
ECC

print <<"dronedary", <<"canelid"; # you can stack them
| said bactrian.
dr onedary
She said || ann.
canelid

Just don't forget that you have to put a semicolon on the end to finish the statement, as Perl doesn't know
you're not going to try to do this:

print <<ABC
179231
ABC
+ 20; # prints 179251

2.3.2.7 Other literal tokens

Two specidl literalsare . LI NE__and __FI LE__, which represent the current line number and filename at
that point in your program. They may only be used as separate tokens; they will not be interpolated into
strings. In addition, thetoken _ END __ may be used to indicate the logical end of the script before the

actual end of file. Any following text isignored, but may be read viathe DATA filehandle.

The DATA _token functionssimilarly tothe END token, but opens the DATA filehandle within the
current package's namespace, so that requir ed files can each have their own DATA filehandles open

simultaneously. For more information, see Chapter 5.

2.3.3 Context

Until now we've seen a number of terms that can produce scalar values. Before we can discuss terms
further, though, we must come to terms with the notion of context.

2.3.3.1 Scalar and list context

Every operation[16] that you invoke in a Perl script is evaluated in a specific context, and how that

operation behaves may depend on the requirements of that context. There are two major contexts. scalar
and list. For example, assignment to a scalar variable evaluates the right-hand side in a scalar context, while
assignment to an array or a hash (or slice of either) evaluates the right-hand side in alist context.
Assignment to alist of scalars would aso provide alist context to the right-hand side.

[16] Here we use the term "operation™ loosely to mean either an operator or aterm. The two
concepts fuzz into each other when you start talking about functions that parse like terms but
look like unary operators.

Y ou will be miserable until you learn the difference between scalar and list context, because certain
operators know which context they are in, and return lists in contexts wanting alist, and scalar valuesin
contexts wanting a scalar. (If thisistrue of an operation, it will be mentioned in the documentation for that
operation.) In computer lingo, the functions are overloaded on the type of their return value. But it's avery
simple kind of overloading, based only on the distinction between singular and plural values, and nothing
else.

Other operations supply the list contexts to their operands, and you can tell which ones they are because
they all have L1 ST in their syntactic descriptions. Generally it's quite intuitive.[17] If necessary, you can

force a scalar context inthe middle of aLI ST by using the scalar function. (Perl provides no way to force

alist context in ascalar context, because anywhere you would want a list context it's already provided by
the LI ST of some controlling function.)

[17] Note, however, that the list context of aLl ST can propagate down through subroutine
calls, so it's not always obvious by inspection whether a given simple statement is going to be
evaluated in ascalar or list context. The program can find out its context within a subroutine
by using the wantarray function.

Scalar context can be further classified into string context, numeric context, and don't-care context. Unlike
the scalar versus list distinction we just made, operations never know which scalar context they'rein. They
simply return whatever kind of scalar value they want to, and let Perl translate numbers to stringsin string
context, and strings to numbers in numeric context. Some scalar contexts don't care whether a string or
number is returned, so no conversion will happen. (This happens, for example, when you are assigning the
value to another variable. The new variable just takes on the same subtype as the old value.)

2.3.3.2 Boolean context

One specia scalar context is called Boolean context. Boolean context is simply any place where an
expression is being evaluated to see whether it's true or false. We sometimes write true and false when we
mean the technical definition that Perl uses: ascalar valueistrueif it is not the null string or the number O
(or itsstring equivalent, " 0"). References are always true.

A Boolean context is a don't-care context in the sense that it never causes any conversions to happen (at
least, no conversions beyond what scalar context would impose).

We said that anull string is false, but there are actually two varieties of null scalars: defined and undefined.
Boolean context doesn't distinguish between defined and undefined scalars. Undefined null scalars are
returned when there is no real value for something, such as when there was an error, or a end of file, or
when you refer to an uninitialized variable or element of an array. An undefined null scalar may become
defined the first time you use it asif it were defined, but prior to that you can use the defined operator to
determine whether the value is defined or not. (The return value of defined is always defined, but not

awaystrue.)
2.3.3.3 Void context

Another peculiar kind of scalar context is the void context. This context not only doesn't care what the
return valueis, it doesn't even want areturn value. From the standpoint of how functions work, it's no
different from an ordinary scalar context. But if you use the -w command-line switch, the Perl compiler
will warn you if you use an expression with no side effects in a place that doesn't want avalue, such asin a
statement that doesn't return avalue. For example, if you use a string as a statement:

"Canel Lot";

you may get awarning like this:
Usel ess use of a constant in void context in nyprog |line 123;

2.3.3.4 Interpolative context

We mentioned that double-quoted literal strings do backslash interpretation and variable interpolation, but
the interpolative context (often called "double-quote context™) applies to more than just double-quoted
strings. Some other double-quotish constructs are the generalized backtick operator gqx/ / , the pattern
match operator m / , and the substitution operator s/ / / . In fact, the substitution operator does
interpolation on its left side before doing a pattern match, and then does interpolation on its right side each
time the left side matches.

The interpolative context only happens inside quotes, or things that work like quotes, so perhapsit's not fair
to call it a context in the same sense as scalar and list context. (Then again, maybeitis.)

2.3.4 List Values and Arrays

Now that we've talked about context, we can talk about list values, and how they behave in context. List
values are denoted by separating individual values by commas (and enclosing the list in parentheses where
precedence requiresiit):

(LI ST)

In alist context, the value of thelist literal isall the values of thelist in order. In ascalar context, the value
of alist literal isthe value of the final element, as with the C comma operator, which always throws away
the value on the left and returns the value on the right. (In terms of what we discussed earlier, the left side
of the comma operator provides avoid context.) For example:

@tuff = ("one", "two", "three");

assignsthe entire list valueto array @t uf f , but:
$stuff = ("one", "two", "three");

assignsonly thevaluet hr ee to variable $st uf f . The comma operator knows whether it isin ascalar or
alist context. An actual array variable also knows its context. In alist context, it would return its entire
contents, but in ascalar context it returns only the length of the array (which works out nicely if you
mention the array in a conditional). The following assignsto $st uf f the value 3:

@tuff = ("one", "two", "three");

$stuff = @tuff; # $stuff gets 3, not "three"

Until now we've pretended that L1 STsarejust lists of literals. But in fact, any expressions that return
values may be used within lists. The values so used may either be scalar values or list values. LI STsdo
automatic interpolation of sublists. That is, when aLl ST is evaluated, each element of thelist is evaluated
in alist context, and the resulting list value isinterpolated into LI ST just asif each individual element
were amember of LI ST. Thus arrayslose their identity inalLl ST. Thelist:

(@ oo, @ar, &SonmeSub)

contains all the elements of @ o0, followed by all the elements of @ar , followed by all the elements
returned by the subroutine named SomeSub when it's called in alist context. You can use areferenceto an
array if you do not want it to interpolate. See Chapter 4, yet again.

The null list isrepresented by () . Interpolating it in alist has no effect. Thus, ((), (), ()) isequivaent
to () . Similarly, interpolating an array with no elementsis the same as if no array had been interpolated at
that point.

Y ou may place an optional comma at the end of any list value. This makes it easy to come back later and
add more elements.

@unbers = (

)

Another way to specify aliteral list iswith the gw (quote words) syntax we mentioned earlier. This
construct is equivalent to splitting a single-quoted string on whitespace. For example:

@oo = qw
appl e banana car anbol a
coconut guava kunguat
mandari n nectari ne peach

pear per si nmon pl um

);

(Note that those parentheses are behaving as quote characters, not ordinary parentheses. We could just as
easily have picked angle brackets or braces or slashes.)

A list value may also be subscripted like anormal array. Y ou must put the list in parentheses (real ones) to
avoid ambiguity. Examples:

Stat returns list val ue.

$nodification tinme = (stat($file))[9];

SYNTAX ERROR HERE.
$nodification tinme = stat($file)[9]; # OOPS, FORGOI PARENS

Find a hex digit.
$hexdigit = (*a','b','c',"'d,"e,"f")[$digit-10];

A "reverse comm operator".
return (pop(@ oo), pop(@o0))[0];

Lists may be assigned to if and only if each element of thelist islegal to assign to:
(%a, $b, $c) = (1, 2, 3);

($map{red}, $map{green}, S$map{blue}) = (0x00f, OxOf0, OxfO00);

List assignment in a scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo, $bar)
$x (($foo, $bar)

Thisis handy when you want to do alist assignment in a Boolean context, since most list functions return a
null list when finished, which when assigned produces a0, which isinterpreted asfalse. The final list
element may be an array or a hash:

($a, $b, @est) = split;

ny ($a, $b, West) = @rg_list;

Y ou can actually put an array or hash anywhere in the list you assign to, but the first one in the list will
soak up al the values, and anything after it will get an undefined value. This may be useful in alocal or

my, where you probably want the arrays initialized to be empty anyway.

(7,7,7)); # set $x to 3, not 2
f()) # set $x to f()'s return count

Y ou may find the number of elementsin the array @lays by evaluating @lays in ascalar context, such
as:

@lays + O; # implicitly force @lays into a scal ar cont ext
scal ar (@ays) # explicitly force @ays into a scal ar cont ext

Note that this only worksfor arrays. It does not work for list valuesin general. A comma-separated list
evaluated in ascalar context will return the last value, like the C comma operator.

Closdly related to the scalar evaluation of @ays is$#days. Thiswill return the subscript of the last
element of the array, or one less than the length, since thereis (ordinarily) a Oth element.[18] Assigning to

$#days changes the length of the array. Shortening an array by this method destroys intervening val ues.

Y ou can gain some measure of efficiency by pre-extending an array that is going to get big. (Y ou can also
extend an array by assigning to an element that is off the end of the array.) Y ou can truncate an array down
to nothing by assigning the null list () toit.[19] The following two statements are equivalent:

[18] For historical reasons, the specia variable $[can be used to change the array base. Its use
is not recommended, however. In fact, thisisthe last we'll even mention it. Just don't use it.

[19] In the current version of Perl, re-extending atruncated array does not recover the values
inthe array. (It did in earlier versions.)

@watever = ();
$#what ever = -1;

And the following is aways true:[20]

[20] Unless you've diddled the deprecated $[variable. Er, thisisthe last time we'll mention it

scal ar (@hat ever) == $#whatever + 1,

2.3.5 Hashes (Associative Arrays)

Aswe indicated previously, ahash isjust afunny kind of array in which you look values up using key
strings instead of numbers. It defines associations between keys and values, so hashes are often called
associative arrays.

Therereally isn't any such thing as a hash literal in Perl, but if you assign an ordinary list to a hash, each
pair of valuesin the list will be taken to indicate one key/value association:

%rap = ('red' , Ox00f, ' green', OxOf O, "' bl ue', Oxf 00);

This has the same effect as:

%rap = (); # clear the hash first
$map{red} = 0x00f;
$map{green} = 0xOfO;
$map{ bl ue} = 0xfO0O;

It is often more readable to use the => operator between key/value pairs. The => operator is just a synonym
for acomma, but it's more visualy distinctive, and it also quotes any bare identifiers to the left of it (just
like the identifiers in braces above), which makes it nice for initializing hash variables:
%rap = (

red => 0x00f,

green => 0xOf 0,

bl ue => 0xf 00,

)
or for initializing anonymous hash references to be used as records:
$rec = {

witch => '"Mable the Mercil ess',

cat => '"Fluffy the Ferocious',

date => '10/31/1776",

}
or for using call-by-named-parameter to invoke complicated functions:

$field = $query->radi o_group(
NAME => ' group_nhane',
VALUES => ['eenie', ' nmeenie' ,'mnie'],
DEFAULT => 'neenie',
LI NEBREAK => 'true',
LABELS => \ % abel s,

);
But we're getting ahead of ourselves. Back to hashes.

Y ou can use ahash variable (Y%ash) in alist context, in which case it interpolates all the key/value pairs
into the list. But just because the hash was initialized in a particular order doesn't mean that the values
come back in that order. Hashes are implemented internally using hash tables for speedy |ookup, which
means that the order in which entries are stored is dependent on the nature of the hash function used to
calculate positions in the hash table, and not on anything interesting. So the entries come back in a
seemingly random order. (The two elements of each key/value pair come out in the right order, of course.)
For examples of how to arrange for an output ordering, see the keys entry in Chapter 3, or DB BTREE

description in the DB_File documentation in Chapter 7.

If you evaluate a hash variable in a scalar context, it returns avalue that istrue if and only if the hash
contains any key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of
the number of used buckets and the number of allocated buckets, separated by aslash. Thisis pretty much
only useful to find out whether Perl’'s (compiled in) hashing algorithm is performing poorly on your data
set. For example, you stick 10,000 things in a hash, but evaluating %4HASH in scalar context reveals "1/ 8",
which means only one out of eight buckets has been touched, and presumably that one bucket contains al
10,000 of your items. Thisisn't supposed to happen.)

2.3.6 Typeglobs and Filehandles

Perl uses an internal type called atypeglob to hold an entire symbol table entry. The type prefix of a
typeglobisa*, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into afunction, but now that we have real references, this mechanism is seldom needed.

Typeglobs (or references thereto) are still used for passing or storing filehandles. If you want to save away
afilehandle, do it thisway:

$fh = *STDOUT,;

or perhaps as areal reference, like this:
$fh = \ * STDQOUT,;

Thisisalso theway to create alocal filehandle. For example:

sub newopen {
my $path = shift;
| ocal *FH, # not ny!
open (FH, $path) || return undef;

return *FH

}
$fh = newopen('/etc/passwd');

See the open entry in Chapter 3 and the FileHandle module in Chapter 7, for how to generate new
filehandles.

But the main use of typeglobs nowadays isto alias one symbol table entry to another symbol table entry. If
you say:
*foo = *bar;

it makes everything named "f 00" asynonym for every corresponding thing named "bar ". You can dias
just one of the variablesin atypeglob by assigning a reference instead:

*foo = \ $bar;

makes $f 0o an aiasfor $bar , but doesn't make @ oo an diasfor @ar , or % oo an aiasfor %bar .
Aliasing variables like this may seem like asilly thing to want to do, but it turns out that the entire module
export/import mechanism is built around this feature, since there's nothing that says the symbol you're
aliasing hasto be in your namespace. See Chapter 4 and Chapter 5 for more discussion on typeglobs.

2.3.7 Input Operators

There are severa input operators we'll discuss here because they parse as terms. In fact, sometimes we call
them pseudo-literals because they act like quoted strings in many ways. (Output operators like print parse

aslist operators and are discussed in Chapter 3.)

2.3.7.1 Command input (backtick) operator

First of all, we have the command input operator, a'so known as the backticks operator, because it looks
like this:

$info = “finger $user’;

A string enclosed by backticks (grave accents) first undergoes variable interpolation just like a
double-quoted string. The result of that is then interpreted as a command by the shell, and the output of that
command becomes the value of the pseudo-literal. (Thisis modeled after a similar operator in some of the
UNIX shells) In scalar context, asingle string consisting of all the output is returned. In list context, alist
of valuesis returned, one for each line of output. (You can set $/ to use a different line terminator.)

The command is executed each time the pseudo-literal is evaluated. The numeric status value of the
command is saved in $? (see the section " Special Variables' later in this chapter for the interpretation of
$?). Unlike the csh version of this command, no translation is done on the return data - newlines remain
newlines. Unlike any of the shells, single quotes do not hide variable names in the command from
interpretation. To passa$ through to the shell you need to hide it with a backslash. The $user inour
example above isinterpolated by Perl, not by the shell. (Because the command undergoes shell processing,
see Chapter 6, Social Engineering, for security concerns.)

The generalized form of backticksisqgx/ / (for "quoted execution™), but the operator works exactly the
same way as ordinary backticks. Y ou just get to pick your quote characters.

2.3.7.2 Line input (angle) operator

The most heavily used input operator isthe line input operator, also known as the angle operator.
Evaluating afilehandle in angle brackets (<STDI N>, for example) yields the next line from the associated
file. (The newline isincluded, so according to Perl's criteriafor truth, afreshly input line is always true, up
until end of file, at which point an undefined value is returned, which isfalse.) Ordinarily you would assign
the input value to a variable, but there is one situation where an automatic assignment happens. If and only
if the line input operator isthe only thing inside the conditional of awhile loop, the value is automatically
assigned to the special variable $. The assigned value is then tested to see whether it is defined. (This may
seem like an odd thing to you, but you'll use the construct in amost every Perl script you write.) Anyway,
the following lines are equivalent to each other:

while (defined($_ = <STDIN>)) { print $_; } # the |l ong way

while (<STDIN>) { print; } # the short way

for (;<STDIN>;) { print; } # while |loop in disguise

print $ while defined($_ = <STDI N>); # long statenent nodifier
print while <STDI N>; # short statenent nodifier

Remember that this special magic requires awhile loop. If you use the input operator anywhere else, you
must assign the result explicitly if you want to keep the value:

I f (<STDI N>) { print; } # WRONG, prints old value of $_
if ($_ = <STDIN>) { print; } # okay

Thefilehandles STDI N, STDOUT, and STDERR are predefined and pre-opened.[21] Additional filehandles
may be created with the open function. See the open entry in Chapter 3 for details on this. Some object
modules also create object references that can be used as filehandles. See the FileHandle module in Chapter
7.

[21] Thefilehandles st di n, st dout , and st der r will also work except in packages, where
they would be interpreted as local identifiers rather than global. They're only there for
compatibility with very old scripts, so use the uppercase versions.

In the while loops above, we were evaluating the line input operator in a scalar context, so it returned each
line separately. However, if you useit in alist context, alist consisting of al the remaining input linesis
returned, one line per list element. It's easy to make a large data space this way, so use this feature with
care:

$one_|line = <MYFI LE>; # Get first line.
@ll lines = <MYFILE>;, # Get the rest of the lines.

There is no while magic associated with the list form of the input operator, because the condition of awhile
loop is aways a scalar context (asis any conditional).

Using the null filehandle within the angle operator is special and can be used to emulate the command-line
behavior of typical UNIX filter programs such as sed and awk. When you read lines from <>, it magically
givesyou all the lines from all the files mentioned on the command line. If no files were mentioned, it
gives you standard input instead, so your program is easy to insert into the middle of a pipeline of
processes.

Here's how it works: the first time <> is evaluated, the @ARGYV array is checked, and if it isnull,

$ARGV] 0] issetto"- ", which when opened gives you standard input. The @ARGYV array isthen
processed as alist of filenames. The loop:

while (<>) {

}

Is equivalent to the following Perl-like pseudocode:

@GARGV = ('-'") unless @\RGY,

while ($ARGY = shift) {
open(ARGV, $ARGV) or warn "Can't open $ARGV: $!\n";
whil e (<ARGV>) {

}

code for each |line

code for each |line

}

except that it isn't so cumbersome to say, and will actually work. It really does shift array @ARGV and put
the current filename into variable $ARGV. It also usesfilehandle ARGV internally - <> isjust a synonym
for <ARGV>, which is magical. (The pseudocode above doesn't work because it treats <ARGV> as
non-magical.)

Y ou can modify @ARGYV before the first <> aslong as the array ends up containing the list of filenames
you really want. Line numbers ($.) continue as if the input were one big happy file. (But see the example
under eof for how to reset line numbers on each file.)

If you want to set @ARGYV to your own list of files, go right ahead. If you want to pass switches into your
script, you can use one of the Getopts modules or put aloop on the front like this:
while ($_ = $ARGV[O], /7-1) {

shift;

last if /™--9%/;

if (/~-D(.*)/) { $debug = $1 }

if (/7-vl) { $verbose++ }

other sw tches

}
while (<>) {

}

The <> symbol will return false only once. If you call it again after thisit will assume you are processing
another @ARGV list, and if you haven't set @ARGV, it will input from STDI N.

code for each |line

If the string inside the angle bracketsis a scalar variable (for example, <$f 00>), then that variable
contains the name of the filehandle to input from, or areference to the same. For example:

$fh = *STDI N;
$line = <$f h>;

2.3.7.3 Filename globbing operator

Y ou might wonder what happens to aline input operator if you put something fancier inside the angle

brackets. What happens isthat it mutates into a different operator. If the string inside the angle bracketsis
anything other than afilehandle name or a scalar variable (even if there are just extra spaces), it is
interpreted as a filename pattern to be "globbed".[22] The pattern is matched against the files in the current
directory (or the directory specified as part of the glob pattern), and the filenames so matched are returned
by the operator. Aswith line input, the names are returned one at atime in scalar context, or al at oncein
list context. In fact, the latter usage is more prevalent. Y ou generally see things like:

[22] This has nothing to do with the previously mentioned typeglobs, other than that they both
usethe* character in awildcard fashion. The* character has the nickname "glob" when used
like this. With typeglobs you're globbing symbols with the same name from the symbol table.
With afilename glob, you're doing wildcard matching on the filenamesin a directory, just as
the various shells do.

ny @iles = <*. htm >;

Aswith other kinds of pseudo-literals, one level of variable interpolation is done first, but you can't say
<$f 00> because that's an indirect filehandle as explained earlier. (In older versions of Perl, programmers
would insert braces to force interpretation as a filename glob: <${ f oo} >. These days, it's considered
cleaner to call theinternal function directly asgl ob($f 00) , which is probably the right way to have
invented it in the first place.)

Whether you use the glob function or the old angle-bracket form, the globbing operator also does while
magic like the line input operator, and assignstheresult to $_. For example:
while (<*.c>) {
chnod 0644, $_;
}

IS equivalent to:
open(FOO, "echo *.c | tr -s " \t\r\f" "\\012\\012\\012\\012'|");
whil e (<FOO>) {

chop;

chnod 0644, $_;

}

In fact, it's currently implemented that way, more or less. (Which meansit will not work on filenames with
spaces in them unless you have csh(1) on your machine.) Of course, the shortest way to do the aboveis:

chnmod 0644, <*.c>;

Because globbing invokes a subshell, it's often faster to call readdir yourself and just do your own grep on
the filenames. Furthermore, due to its current implementation of using a shell, the glob routine may get
"Arg i st too | ong" erors(unlessyou'veinstalled tcsh(1) as/bin/csh).

A glob evaluates its (embedded) argument only when it is starting a new list. All values must be read
beforeit will start over. In alist context thisisn't important, because you automatically get them all
anyway. In ascalar context, however, the operator returns the next value each timeitiscalled, or afalse
valueif you'vejust run out. Again, falseisreturned only once. So if you're expecting asingle value from a
glob, it is much better to say:

($file) = <blurch*>; # list context

than to say:
$file = <blurch*>; # scal ar cont ext

because the former slurps all the matched filenames and resets the operator, while the latter will alternate
between returning a filename and returning false.

It you're trying to do variable interpolation, it's definitely better to use the glob operator, because the ol der
notation can cause people to become confused with the indirect filehandle notation. But with things like
this, it begins to become apparent that the borderline between terms and operatorsis a bit mushy:

@iles = glob("$dir/*.[ch]"); # call glob as function

@iles = gl ob $sone_pattern; # call glob as operator

We |eft the parentheses off of the second example to illustrate that glob can be used as a unary operator;
that is, a prefix operator that takes a single argument. The glob operator is an example of anamed unary

operator, which isjust one of the kinds of operators we'll talk about in the section "Operators' later in this
chapter. But first we're going to talk about pattern matching operations, which also parse like terms but
operate like operators.

Previous: 2.2 Built-in Data Programming | Next: 2.4 Pattern Matching]
Types Perl

2.2 Built-in Data Types Book 2.4 Pattern Matching
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.3 Chapter 2 Next: 2.5
Terms The Gory Details Operators

2.4 Pattern Matching

The two main pattern matching operators are ml / , the match operator, and s/ / / , the substitution operator.
Thereis also asplit operator, which takes an ordinary match operator asits first argument but otherwise

behaves like afunction, and is therefore documented in Chapter 3.

Although wewritem’ / ands/ // here, you'll recall that you can pick your own quote characters. On the
other hand, for then? / operator only, the mmay be omitted if the delimiters you pick are in fact slashes.
(You'll often see patterns written this way, for historical reasons.)

Now that we've gone to all the trouble of enumerating these weird, quote-like operators, you might wonder
what it iswe've gone to al the trouble of quoting. The answer is that the string inside the quotes specifies a
regular expression. We'll discuss regular expressions in the next section, because there's alot to discuss.

The matching operations can have various modifiers, some of which affect the interpretation of the regular
expression inside:

Modifier |Meaning

[Do case-insensitive pattern matching.

m Treat string as multiple lines (* and $ match internal \ n).
S Treat string assingleline (* and $ ignore\ n, but . matches\ n).
X Extend your pattern's legibility with whitespace and comments.

These are usually written as "the /x modifier", even though the delimiter in question might not actually be a
dash. In fact, any of these modifiers may also be embedded within the regular expression itself using the
(?...) construct. Seethe section "Regular Expression Extensions' later in this chapter.

The /x modifier itself needs alittle more explanation. It tells the regular expression parser to ignore
whitespace that is not backslashed or within a character class. Y ou can use this modifier to break up your
regular expression into (slightly) more readable parts. The # character is also treated as a metacharacter
introducing a comment, just asin ordinary Perl code. Taken together, these features go along way toward
making Perl areadable language.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

2.4.1 Regular Expressions

The regular expressions used in the pattern matching and substitution operators are syntactically similar to
those used by the UNIX egrep program. When you write aregular expression, you're actually writing a
grammar for alittle language. The regular expression interpreter (which we'll call the Engine) takes your
grammar and comparesit to the string you're doing pattern matching on. If some portion of the string can
be parsed as a sentence of your little language, it says"yes". If not, it says"no".

What happens after the Engine has said "yes" depends on how you invoked it. An ordinary pattern match is
usually used as a conditional expression, in which case you don't care where it matched, only whether it
matched. (But you can also find out where it matched if you need to know that.) A substitution command
will take the part that matched and replace it with some other string of your choice. And the split operator

will return (as alist) all the places your pattern didn't match.

Regular expressions are powerful, packing alot of meaning into a short space. They can therefore be quite
daunting if you try to intuit the meaning of alarge regular expression as awhole. But if you break it up into
its parts, and if you know how the Engine interprets those parts, you can understand any regular expression.

2.4.1.1 The regular expression bestiary

Before we dive into the rules for interpreting regular expressions, let's take alook at some of the things
you'll seein regular expressions. First of al, you'll see literal strings. Most character§[23] in aregular
expression simply match themselves. If you string several charactersin arow, they must match in order,
just as you'd expect. So if you write the pattern match:

[23] In this section we are misusing the term "character" to mean "byte". So far, Perl only
knows about byte-sized characters, but this will change someday, at which point "character”
will be a more appropriate word.

/ Fred/
you can know that the pattern won't match unless the string contains the substring "Fr ed" somewhere.

Other characters don't match themselves, but are metacharacters. (Before we explain what metacharacters
do, we should reassure you that you can always match such a character literally by putting a backslash in
front of it. For example, backslash isitself a metacharacter, so to match aliteral backslash, you'd backslash
the backslash: \ \ .) Thelist of metacharactersis:

Vo) s+

We said that backslash turns a metacharacter into aliteral character, but it does the opposite to an
alphanumeric character: it turnsthe literal character into a sort of metacharacter or sequence. So whenever
you see a two-character sequence:

\b \D\t \3\s

you'll know that the sequence matches something strange. A \ b matches a word boundary, for instance,
while\ t matches an ordinary tab character. Notice that a word boundary is zero characters wide, while a
tab character is one character wide. Still, they're alike in that they both assert that something is true about a
particular spot in the string. Most of the thingsin aregular expression fall into the class of assertions,
including the ordinary characters that smply assert that they match themselves. (To be precise, they also

assert that the next thing will match one character later in the string, which iswhy we talk about the tab
character being "one character wide". Some assertions eat up some of the string as they match, and others
don't. But we usually reserve the term "assertion” for the zero-width assertions. We'll call these assertions
with nonzero width atoms.) Y ou'll also see some things that aren't assertions. Alternation isindicated with a
vertical bar:

/| Fred| W | ma| Bar ney| Bet ty/

That means that any of those strings can trigger a match. Grouping of various sorts is done with
parentheses, including grouping of aternating substrings within alonger regular expression:

/| (Fred| W1 ma| Pebbl es) Flintstone/

Another thing you'll see are what we call quantifiers. They say how many of the previous thing should
match in arow. Quantifierslook like:

* 4+ 9 *2 {2 5}

Quantifiers only make sense when attached to atoms, that is, assertions that have width. Quantifiers attach
only to the previous atom, which in human terms means they only quantify one character. So if you want to
match three copies of "nobo" in arow, you need to group the "noo" with parentheses, like this:

/ (moo) {3}/
That will match "nmoonoonoo”. If you'd said/ noo{ 3}/, it would only have matched "noooo".

Since patterns are processed as double-quoted strings, the normal double-quoted interpolations will work.
(See"String Literals" earlier in this chapter.) These are applied before the string is interpreted as a regular
expression. One caveat though: any $ immediately followed by avertical bar, closing parenthesis, or the
end of the string will be interpreted as an end-of-line assertion rather than a variable interpolation. So if you
say:

$f oo = "noo";

| $f 009%/ ;

it's equivalent to saying:
/ moo$/ ;

Y ou should also know that interpolating variables into a pattern slows down the pattern matcher
considerably, because it feels it needs to recompile the pattern each time through, since the variable might
have changed.

2.4.1.2 The rules of regular expression matching

Now that you've seen some regular expressions, we'll lay out the rules that the Engine uses to match your
pattern against the string. The Perl Engine uses a nondeterministic finite-state automaton (NFA) to find a
match. That just means that it keepstrack of what it hastried and what it hasn't, and when something
doesn't pan out, it backs up and tries something else. Thisis called backtracking. The Perl Engineis
capable of trying amillion things at one spot, then giving up on all those, backing up to within one choice
of the beginning, and trying the million things again at a different spot. If you're cagey, you can write
efficient patterns that don't do alot of silly backtracking.

The order of the rules below specifies which order the Engine tries things. So when someone trots out a

stock phrase like "left-most, longest match", you'll know that overall Perl prefers left-most over longest.
But the Engine doesn't redlize it's preferring anything at that level. The global preferences result from alot
of localized choices. The Engine thinks locally and acts globally.

Rule 1. The Engine tries to match asfar left in the string as it can, such that the entire regular expression
matches under Rule 2.

In order to do this, itsfirst choiceisto start just before the first character (it could have started anywhere),
and to try to match the entire regular expression at that point. The regular expression matchesif and only if
Engine reaches the end of the regular expression before it runs off the end of the string. If it matches, it
guitsimmediately - it doesn't keep looking for a"better" match, even though the regular expression could
match in many different ways. The match only has to reach the end of the regular expression; it doesn't
have to reach the end of the string, unless there's an assertion in the regular expression that saysit must. If
it exhausts all possibilities at the first position, it realizes that its very first choice was wrong, and proceeds
to its second choice. It goes to the second position in the string (between the first and second characters),
and tries all the possibilities again. If it succeeds, it stops. If it fails, it continues on down the string. The
pattern match as a whole doesn't fail until it has tried to match the entire regular expression at every
position in the string, including after the last character in the string.

Note that the positionsiit's trying to match at are between the characters of the string. This rule sometimes
surprises people when they write a pattern like/ x*/ that can match zero or more x's. If you try the pattern
on astring like"f ox", it will match the null string before the "f " in preference to the "x" that's later in the
string. If you want it to match one or more x's, you need to tell it that by using / x+/ instead. See the
guantifiers under Rule 5.

A corollary to thisruleisthat any regular expression that can match the null string is guaranteed to match
at the leftmost position in the string.

Rule 2. For thisrule, the whole regular expression is regarded as a set of aternatives (where the degenerate
caseisjust aset with one alternative). If there are two or more alternatives, they are syntactically separated
by the | character (usually called avertical bar). A set of aternatives matches astring if any of the
alternatives match under Rule 3. It tries the alternatives left-to-right (according to their position in the
regular expression), and stops on the first match that allows successful completion of the entire regular
expression. If none of the alternatives matches, it backtracks to the Rule that invoked this Rule, whichis
usually Rule 1, but could be Rule 4 or 6. That rule will then look for anew position at which to apply Rule
2.

If there's only one alternative, then it either it matches or doesn't, and the rule still applies. (There's no such
thing as zero alternatives, because anull string can always match something of zero width.)

Rule 3. Any particular alternative matchesif every item in the alternative matches sequentially according
to Rules 4 and 5 (such that the entire regular expression can be satisfied). An item consists of either an
assertion, which is covered in Rule 4, or a quantified atom, which is covered by Rule 5. Items that have
choices on how to match are given "pecking order" from left to right. If the items cannot be matched in
order, the Engine backtracks to the next alternative under Rule 2.

Items that must be matched sequentially aren't separated in the regular expression by anything syntactic -
they're merely juxtaposed in the order they must match. When you ask to match / ~f oo/ , you're actually
asking for four items to be matched one after the other. The first is a zero-width assertion, and the other
three are ordinary letters that must match themselves, one after the other.

The left-to-right pecking order means that in a pattern like:
[x*y*/
X getsto pick one way to match, and theny triesal itsways. If that fails, then x getsto pick its second

choice, and makey try all of itsways again. And so on. The itemsto the right vary faster, to borrow a
phrase from multi-dimensional arrays.

Rule 4. An assertion must match according to this table. If the assertion does not match at the current
position, the Engine backtracks to Rule 3 and retries higher-pecking-order items with different choices.

Assertion |Meaning

A Matches at the beginning of the string (or line, if /m used)
$ Matches at the end of the string (or line, if /m used)

\'b Matches at word boundary (between\ wand\ W

\B Matches except at word boundary

\A Matches at the beginning of the string

\Z Matches at the end of the string

\G Matches where previous ml / g left off

(?=...) |Matchesif enginewould match. .. next

(?!...) |Matchesif engine wouldn't match. . . next

The $ and\ Z assertions can match not only at the end of the string, but also one character earlier than that,
if the last character of the string happens to be a newline.

The positive (?=. . .) and negative (?! . ..) lookahead assertions are zero-width themselves, but assert
that the regular expression represented above by . . . would (or would not) match at this point, were we to

attempt it. In fact, the Engine does attempt it. The Engine goes back to Rule 2 to test the subexpression, and
then wipes out any record of how much string was eaten, returning only the success or failure of the
subexpression as the value of the assertion. We'll show you some examples later.

Rule 5. A quantified atom matches only if the atom itself matches some number of times allowed by the
guantifier. (The atom is matched according to Rule 6.) Different quantifiers require different numbers of
matches, and most of them allow arange of numbers of matches. Multiple matches must all match in arow,
that is, they must be adjacent within the string. An unquantified atom is assumed to have a quantifier
requiring exactly one match. Quantifiers constrain and control matching according to the table below. If no
match can be found at the current position for any allowed quantity of the atom in question, the Engine
backtracks to Rule 3 and retries higher-pecking-order items with different choices.

Quantifiers are:

Maximal [Minimal |Allowed Range

{ n,m} {n,m}? |Must occur at least n times but no more than mtimes

{n,} {n,}? |Must occur at least n times

{n} {n}? Must match exactly n times

* *? 0 or moretimes (sameas{ 0, })
+ +7? 1 or moretimes (sameas{ 1, })
? ?7? Oor ltime(sameas{ 0, 1})

If abrace occursin any other context, it istreated as aregular character. n and m are limited to integral
values |ess than 65,536.

If you usethe{ n} form, then thereisno choice, and the atom must match exactly that number of times or
not at all. Otherwise, the atom can match over arange of quantities, and the Engine keepstrack of all the
choices so that it can backtrack if necessary. But then the question arises as to which of these choicesto try
first. One could start with the maximal number of matches and work down, or the minimal number of
matches and work up.

The quantifiersin the left column above try the biggest quantity first. Thisis often called "greedy"
matching. To find the greediest match, the Engine doesn't actually count down from the maximum value,
which after all could be infinity. What actually happensin this case is that the Engine first counts up to find
out how many atoms it's possible to match in arow in the current string, and then it remembers all the
shorter choices and starts out from the longest one. This could fail, of course, in which case it backtracks to
ashorter choice.

If yousay /. *f oo/, for example, it will try to match the maximal number of "any" characters
(represented by the dot) clear out to the end of the line before it ever trieslooking for "f 00", and then
when the "f 00" doesn't match there (and it can't, because there's not enough room for it at the end of the
string), the Engine will back off one character at atime until it findsa"f oo". If there is more than one
"f 00" intheline, it'll stop on the last one, and throw away all the shorter choices it could have made.

By placing a question mark after any of the greedy quantifiers, they can be made to choose the smallest
guantity for thefirst try. Soif yousay / . * ?f oo/ , the. * ? first tries to match O characters, then 1
character, then 2, and so on until it can match the "f 00". Instead of backtracking backward, it backtracks
forward, so to speak, and ends up finding the first "f 00" on the line instead of the last.

Rule 6. Each atom matches according to its type, listed below. If the atom doesn't match (or doesn't allow a
match of the rest of the regular expression), the Engine backtracks to Rule 5 and tries the next choice for
the atom'’s quantity.

Atoms match according to the following types:

» A regular expression in parentheses, (. . .) , matches whatever the regular expression (represented
by . . .) matches according to Rule 2. Parentheses therefore serve as a grouping operator for
quantification. Parentheses also have the side effect of remembering the matched substring for later
use in a backreference (to be discussed later). This side effect can be suppressed by using (?: . . .)
instead, which has only the grouping semantics - it doesn't store anything in $1, $2, and so on.

o A". " matches any character except \ n. (It also matches\ n if you use the /s modifier.) The main use
of dot isasavehicle for aminimal or maximal quantifier. A . * matches a maximal number of

don't-care characters, whilea. * ? matches a minimal number of don't-care characters. But it'saso
sometimes used within parentheses for itswidth: / (..) : (. .): (. .)/ matchesthree
colon-separated fields, each of which istwo characters long.

« A list of charactersin sguare brackets (called a character class) matches any one of the charactersin
thelist. A caret at the front of the list causesit to match only characters that are not in the list.
Character ranges may be indicated using the a- z notation. You may alsouseany of \ d,\ w,\ s, \ n,
\r,\t,\f,or\nnn, aslisted below. A\ b means a backspace in a character class. You may use a
backslash to protect a hyphen that would otherwise be interpreted as a range delimiter. To match a
right square bracket, either backslash it or placeit first in the list. To match a caret, don't put it first.
Note that most other metacharacters lose their meta-ness inside square brackets. In particular, it's
meaningless to specify alternation in a character class, since the characters are interpreted
individually. For example, [f ee| fi e| f oe] meansthesamethingas|[fei o]].

« A backslashed letter matches a special character or character class:

Code |Matches

\a |Alarm (beep)

\n Newline

\r Carriage return

\ 't Tab
\ f Formfeed
\e |Escape

\'d |Adigit,sameas|[0- 9]
\'D | A nondigit

\'w | A word character (alphanumeric), sameas|[a- zA- Z_0- 9]

\' W |A nonword character

\'s |A whitespace character, sameas[\t\n\r\f]

\'S | A non-whitespace character

Note that \ wmatches a character of aword, not awhole word. Use\ w+ to match a word.

« A backdlashed single-digit number matches whatever the corresponding parentheses actually
matched (except that \ 0 matches anull character). Thisis called a backreference to a substring. A
backslashed multi-digit number such as\ 10 will be considered a backreference if the pattern
contains at least that many substrings prior to it, and the number does not start with a0. Pairs of
parentheses are numbered by counting left parentheses from the left.

« A backdlashed two- or three-digit octal number such as\ 033 matches the character with the
specified value, unlessit would be interpreted as a backreference.

« A backdlashed x followed by one or two hexadecimal digits, such as\ x7f , matches the character

having that hexadecimal value.

« A backsdlashed c followed by asingle character, such as\ ¢ D, matches the corresponding control
character.

« Any other backslashed character matches that character.

« Any character not mentioned above matches itself.
2.4.1.3 The fine print

As mentioned above, \ 1,\ 2,\ 3, and so on, are equivalent to whatever the corresponding set of
parentheses matched, counting opening parentheses from left to right. (If the particular pair of parentheses
had a quantifier such as* after it, such that it matched a series of substrings, then only the last match
counts as the backreference.) Note that such a backreference matches whatever actually matched for the
subpattern in the string being examined; it's not just a shorthand for the rules of that subpattern. Therefore,
(0] Ox)\ d*\ s\ 1\ d* will match"0x1234 0x4321", but not "0x1234 01234", since subpattern 1
actually matched "0x", even though the rule O] Ox could potentially match the leading O in the second
number.

Outside of the pattern (in particular, in the replacement of a substitution operator) you can continue to refer
to backreferences by using $ instead of \ in front of the number. The variables $1, $2, $3 ... are
automatically localized, and their scope (and that of $, $&, and $ below) extends to the end of the
enclosing block or eval string, or to the next successful pattern match, whichever comesfirst. (The\ 1
notation sometimes works outside the current pattern, but should not be relied upon.) $+ returns whatever
the last bracket match matched. $& returns the entire matched string. $ returns everything before the
matched string.[24] $' returns everything after the matched string. For more explanation of these magical
variables (and for away to write them in English), see the section "Specia Variables' at the end of this
chapter.

[24] In the case of something likes/ pattern/ | engt h($)/ eg, which does multiple
replacementsiif the pattern occurs multiple times, the value of $ does not include any
modifications done by previous replacement iterations. To get the other effect, say:

1 while s/pattern/length($)/e;

For example, to change all tabs to the corresponding number of spaces, you could say:

1 while s/\t+/'" ' x (length($& * 8 - length($) %8)/e;
Y ou may have as many parentheses as you wish. If you have more than nine pairs, the variables $10, $11,
... refer to the corresponding substring. Within the pattern, \ 10, \ 11, and so on, refer back to substrings if
there have been at least that many left parentheses before the backreference. Otherwise (for backward

compatibility) \ 10 isthe sameas\ 010, a backspace, and\ 11 thesameas\ 011, atab. Andsoon. (\ 1
through \ 9 are always backreferences.)

Examples:
sIN([N]+) +([N]4H)%2 $1/; # swap first two words

[(\w)\s*=\'s*\1/; # match "foo = foo"

/.{80,}/; # match line of at |east 80 chars

[N+ 2 d |\ N dt) $ # match valid nunber
if (/Time: (..):(..):(..)/) { # pull fields out of a line
$hours = $1;
$m nutes = $2;
$seconds = $3;
}
Hint: instead of writing patternslike/ (...) (..) (... ..)/, usethe unpack function. It'smore
efficient.

A word boundary (\ b) is defined as a spot between two characters that hasa\ won one side of it and a\ W
on the other side of it (in either order), counting the imaginary characters off the beginning and end of the
string as matching a\ W (Within character classes\ b represents backspace rather than a word boundary.)

Normally, the” character is guaranteed to match only at the beginning of the string, the $ character only at
the end (or before the newline at the end), and Perl does certain optimizations with the assumption that the
string contains only one line. Embedded newlines will not be matched by ~ or $. However, you may wish
to treat a string as a multi-line buffer, such that the ™ will also match after any newline within the string,
and $ will also match before any newline. At the cost of alittle more overhead, you can do this by using
the /m modifier on the pattern match operator. (Older programs did this by setting $*, but this practiceis
now deprecated.) \ Aand\ Z arejust like” and $ except that they won't match multiple times when the /m
modifier is used, while”™ and $ will match at every internal line boundary. To match the actual end of the
string, not ignoring newline, you can use\ Z(?! \ n) . There's an example of a negative lookahead
assertion.

To facilitate multi-line substitutions, the . character never matches a newline unless you use the /s
modifier, which tells Perl to pretend the string isa single line - even if it isn't. (The /s modifier also
overrides the setting of $*, in case you have some (badly behaved) older code that setsit in another
module.) In particular, the following leaves anewlineon the $_ string:

$ = <STDI N>;
s/.*(sone_string).*/ $1/;

If the newline is unwanted, use any of these:

s/.*(sonme_string).*/$1/s;
s/.*(sone_string).*\n/ $1/;
s/.*(sone_string)["\0]*/$1/;
s/.*(sonme_string)(.|\n)*/$1/;

chop; s/.*(sonme_string).*/$1/;
/ (some_string)/ && ($_ = $1);

Note that all backslashed metacharacters in Perl are alphanumeric, such as\ b, \ w, and\ n. Unlike some
regular expression languages, there are no backslashed symbols that aren't alphanumeric. So anything that
lookslike\\ ,\ (,\),\<,\>\{,or\} isawaysinterpreted as alitera character, not a metacharacter.
This makes it simple to quote a string that you want to use for a pattern but that you are afraid might

contain metacharacters. Just quote all the non-alphanumeric characters:
$pattern =~ s/ (\W/\\$1/g;

Y ou can also use the built-in quotemeta function to do this. An even easier way to quote metacharacters
right in the match operator isto say:

/ $unquot ed\ @quot ed\ ESunquot ed/

Remember that the first and last alternatives (before the first | and after the last one) tend to gobble up the
other elements of the regular expression on either side, out to the ends of the expression, unless there are
enclosing parentheses. A common mistake isto ask for:

| "fee|fie|foe$/

when you really mean:

I "(fee|fie|foe)$/

Thefirst matches"f ee" at the beginning of the string, or "f i e" anywhere, or "f oe" at the end of the
string. The second matches any string consisting solely of "f ee" or "f i " or "f oe".

2.4.1.4 Regular expression extensions

Perl defines a consistent extension syntax for regular expressions. Y ou've seen some of them already. The
syntax isapair of parentheses with a question mark as the first thing within the parentheses.[25] The

character after the question mark gives the function of the extension. Several extensions are aready
supported:

[25] Thiswas a syntax error in older versions of Perl. If you try to use this and have problems,
upgrade to the newest version.

(?#t ext)
A comment. Thetext isignored. If the /x switch is used to enable whitespace formatting, a simple #
will suffice.

(?:...)

Thisgroupsthingslike"(. ..)" but doesn't make backreferenceslike"(. . .) " does. So:
split(/\b(?:a]blc)\b/)

islike:

split(/\b(alblc)\b/)

but doesn't actually save anything in $1, which means that the first split doesn't spit out extra
delimiter fields as the second one does.

(?=...)

A zero-width positive |lookahead assertion. For example, / \ w+(?=\t) / matches aword followed
by atab, without including thetab in $& .

(?'...)

A zero-width negative lookahead assertion. For example/ f oo(?! bar) / matches any occurrence

of "f 00" that isn't followed by "bar ". Note, however, that lookahead and |ookbehind are not the
same thing. Y ou cannot use this for lookbehind: / (?! f 0o) bar/ will not find an occurrence of
"bar " that is preceded by something that is not "f 00". That's because the (?! f 00) isjust saying
that the next thing cannot be "f 00" - and it'snot, it'sa"bar ", so"f oobar " will match. Y ou would
have to do something like/ (?! f 00) ...bar/ for that. We say "like" because there's the case of your
"bar " not having three characters before it. Y ou could cover that this way:
[(?:(?'foo)..|~{0, 2}bar/.Sometimesit'sstill easier just to say:
if (/bar/ and $!~ /foo$/)

(?1 mex)

One or more embedded pattern-match modifiers. Thisis particularly useful for patternsthat are
specified in atable somewhere, some of which want to be case-sensitive, and some of which don't.
The case-insensitive ones merely need to include (?i) at the front of the pattern. For example:

hardwi red case insensitivity

$pattern = "buffal o";
if (/$pattern/i)

data-driven case insensitivity
$pattern = "(?i)buffal o";
if (/$pattern/)

We chose to use the question mark for this (and for the new minimal matching construct) because (1)
guestion mark is pretty rare in older regular expressions, and (2) whenever you see one, you should stop
and question exactly what is going on. That's psychology.

2.4.2 Pattern-Matching Operators

Now that we've got all that out of the way, here finally are the quotelike operators (er, terms) that perform
pattern matching and related activities.

m PATTERN gi nosx

| PATTERN gi nosx
This operator searches a string for a pattern match, and in a scalar context returnstrue (1) or false
(""). If nostring is specified viathe =~ or ! ~ operator, the $_ string is searched. (The string

specified with =~ need not be an Ivalue - it may be the result of an expression evaluation, but
remember the =~ binds rather tightly, so you may need parentheses around your expression.)

Modifiers are:

Modifier |Meaning

g Match globally, that is, find all occurrences.

[Do case-insensitive pattern matching.

m Treat string as multiple lines. (continued)

o] Only compile pattern once.

S Treat string as single line.

X Use extended regular expressions.

If / isthe delimiter then the initial mis optional. With the myou can use any pair of non-al phanumeric,
non-whitespace characters as delimiters. Thisis particularly useful for matching filenames that contain "/ ",
thus avoiding LTS (leaning toothpick syndrome).

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every time the
pattern search is evaluated. (Note that $) and $| will not be interpolated because they ook like end-of-line
tests.) If you want such a pattern to be compiled only once, add a /o after the trailing delimiter. This avoids
expensive run-time recompilations, and is useful when the value you are interpolating won't change during
execution. However, mentioning /o constitutes a promise that you won't change the variables in the pattern.
If you do change them, Perl won't even notice.

If the PATTERN evaluates to a null string, the last successfully executed regular expression not hidden
within an inner block (including split, grep, and map) is used instead.

If used in a context that requires alist value, a pattern match returns alist consisting of the subexpressions
matched by the parentheses in the pattern - that is, ($1, $2, $3 ...). (The variables are also set.) If the match
fails, anull list isreturned. If the match succeeds, but there were no parentheses, alist value of (1) is
returned.

Examples:

case insensitive matching
open(TTY, '/dev/tty');
<TTY> =~ [~y/i and foo(); # do foo() if they want it

pulling a substring out of a |line
if (/Version: *([0-9.]+)/) { $version = $1; }

avoi di ng Leani ng Toot hpi ck Syndrone
next if n#* usr/spool /uucp#;

poor nman's grep

$arg = shift;
while (<>) {

print if /$arg/o; # conpile only once
}

get first two words and remai nder as a |i st
if (($F1, $F2, $Etc) = ($foo =~ /MNs*(\St)\s+(\S+)\s*(.*)/))

Thislast example splits $f oo into the first two words and the remainder of the line, and assigns those three
fieldsto $F1, $F2, and $Et c. The conditional istrue if any variables were assigned, that is, if the pattern
matched. Usually, though, one would just write the equivalent split:

if (($F1, $F2, $Etc) = split(' ', $foo, 3))

The /g modifier specifies global pattern matching - that is, matching as many times as possible within the
string. How it behaves depends on the context. In alist context, it returns alist of all the substrings matched
by all the parentheses in the regular expression. If there are no parentheses, it returns alist of all the
matched strings, as if there were parentheses around the whole pattern.

In ascalar context, m//g iterates through the string, returning true each time it matches, and false when it
eventually runs out of matches. (In other words, it remembers where it left off last time and restarts the
search at that point. You can find the current match position of a string using the pos function - see Chapter

3.) If you modify the string in any way, the match position is reset to the beginning. Examples:

list context--extract three nuneric fields fromuptine command
($one, $five, $fifteen) = (“uptinme =~ /(\d+\.\d+)/Q);

scal ar context--count sentences in a docunent by recogni zi ng
sentences ending in [.!7?], perhaps with quotes or parens on
either side. Observe how dot in the character class is a literal
dot, not nerely any character.
$/ =""; # paragraph node
whi | e ($paragraph = <>) {

while ($paragraph =~ /[a-z]["")]*[.!?]+["")]*\s/g) {

$sent ences++;

}

}

print "$sentences\n";

find duplicate words i n paragraphs, possibly spanning |ine boundari es.
Use /x for space and comrents, /i to match the both "is’

in "Is is this ok?", and use /g to find all dups.
$/ =""; # paragrep node again
while (<>) {
while (
\b # start at a word boundary
(\W\ S+) # find a wordi sh chunk
(
\'s+ # separated by sone whitespace
\1 # and that chunk again
) + # repeat ad lib
\b # unti|l anot her word boundary
}xig
)
{
print "dup word " $1' at paragraph $.\n";
}
}
?PATTERN?

Thisisjust likethe/ PATTERN search, except that it matches only once between calls to the reset

operator. Thisis auseful optimization when you only want to see the first occurrence of something
in each file of aset of files, for instance. Only ?? patternslocal to the current package are reset.

This usage is vaguely deprecated, and may be removed in some future version of Perl. Most people just
bomb out of the loop when they get the match they want.

s/ PATTERN REPLACEMENT/ egi nosx

This operator searches a string for PATTERN, and if found, replaces that match with the
REPLACEMENT text and returns the number of substitutions made, which can be more than one with
the /g modifier. Otherwise it returns false (0).

If no string is specified viathe =~ or ! ~ operator, the $_variable is searched and modified. (The string
specified with =~ must be a scalar variable, an array element, a hash element, or an assignment to one of
those, that is, an lvalue.)

If the delimiter you choose happens to be a single quote, no variable interpolation is done on either the
PATTERN or the REPLACENMENT. Otherwise, if the PATTERN contains a $ that looks like a variable rather
than an end-of-string test, the variable will be interpolated into the PATTERN at run-time. If you want the
PATTERN compiled only once, when the variable isfirst interpolated, use the /o option. If the PATTERN
evaluatesto anull string, the last successfully executed regular expression is used instead. The
REPLACEMENT pattern also undergoes variable interpolation, but it does so each time the PATTERN
matches, unlike the PATTERN, which just gets interpolated once when the operator is evaluated. (The
PATTERN can match multiple timesin one evaluation if you use the /g option below.)

Modifiers are:

Modifier |Meaning

e Evaluate the right side as an expression.
g Replace globally, that is, all occurrences.

[Do case-insensitive pattern matching.

m Treat string as multiple lines.

0 Only compile pattern once.

S Treat string as single line.

X Use extended regular expressions.

Any non-al phanumeric, non-whitespace delimiter may replace the slashes. If single quotes are used, no
interpretation is done on the replacement string (the /e modifier overrides this, however). If the PATTERN
Is contained within naturally paired delimiters (such as parentheses), the REPLACENMENT has its own pair
of delimiters, which may or may not be the same ones used for PATTERN - for example, s(f 00) (bar)
or s<f 00>/ bar/ . A /e will cause the replacement portion to be interpreted as a full-fledged Perl
expression instead of as a double-quoted string. (It's kind of like an eval, but its syntax is checked at
compile-time.)

Examples:

don't change w ntergreen
s/ \ bgreen\ b/ nauve/ g;

avoid LTS with different quote characters
$path =~ s(/usr/bin)(/usr/local/bin);

interpol ated pattern and repl acenent
s/ Logi n: $foo/ Logi n: $bar/;

nodifying a string "en passant”
($foo = $bar) =~ s/this/that/;

counting the changes
$count = ($paragraph =~ s/Mster\b/M./Qg);

using an expression for the repl acenent

$ = 'abcl23xyz';

s/\ d+/ $&* 2/ e; # yields 'abc246xyz’
s/\d+/sprintf("9%d",$&)/e; # yields 'abc 246xyz'

s/\w $& x 2/ eg; # yields 'aabbcc 224466xxyyzz

how to default things with /e

s/ % .)/ $percent {$1}/ q; # change percent escapes; no /e
s/ 9% .)/ $percent{$1} || $& ge; # expr now, so /e

s/ M=(\w+)/ &od($1)/ ge; # use function cal

/e's can even nest; this will expand sinple enbedded variables in $_
s/ (\ $\ w+)/ $1/ eeq;

delete C conments

$program =~ s {
[\ * # Match the opening delimter.
L*? # Match a m ni mal nunber of characters.
\ */ # Match the closing delimter.

} [19sx;

trimwhite space
s/™Ms*(.*?2)\s*$/ $1/;

reverse 1st two fields

s/([™ 1) *([" 1*)/%$2 $1/;

Note the use of $ instead of \ in the last example. Some people get alittle too used to writing things like:
$pattern =~ s/ (\W/\\\1/qg;

Thisis grandfathered for the right-hand side of a substitution to avoid shocking the sed addicts, but it'sa
dirty habit to get into.[26] That's because in PerlThink, the right-hand side of as/ / / is a double-quoted

string. In an ordinary double-quoted string, \ 1 would mean a control-A, but for s/ / / the customary UNIX
meaning of \ 1 iskludged in. (The lexer actually trandatesit to $1 on the fly.) If you start to rely on that,
however, you get yourself into trouble if you then add an /e modifier:

[26] Or to not get out of, depending on how you look at it.
s/(\d+)/ \1 + 1 /eq; # a scal ar reference plus one?

Or if you try to do:
s/ (\d+)/\1000/; # "\100" . "0" = "@"?

Y ou can't disambiguate that by saying\ { 1} 000, whereas you can fix it with ${ 1} 000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference.
Certainly, interpolation and matching mean two different things on the left side of thes/ / /.

Occasionally, you can't just use a/g to get all the changes to occur, either because the substitutions have to
happen right-to-left, or because you need the length of $ to change between matches. In this case you can
usually do what you want by calling the substitution repeatedly. Here are two common cases:

put conmas in the right places in an integer
1 while s/(\d)(\d\d\d) (?'\d)/$1, $2/;

expand tabs to 8-col um spacing

1 while s/\t+/'" ' x (length($&) *8 - length($)W)/ e;
t r/ SEARCHLI ST/ REPLACEMENTLI ST/ cds

y/ SEARCHLI ST/ REPLACEMENTLI ST/ cds

Strictly speaking, this operator doesn't belong in a section on pattern matching because it doesn't use
regular expressions. Rather, it scans a string character by character, and replaces all occurrences of
the characters found in the SEARCHLI ST with the corresponding character in the
REPLACEMENTLI ST. It returns the number of characters replaced or deleted. If no string is
specified viathe =~ or ! ~ operator, the$_ string is trandlated. (The string specified with =~ must be
ascalar variable, an array element, or an assignment to one of those, that is, an Ivalue.) For sed
devotees, y is provided as asynonym for tr///. If the SEARCHLI ST is contained within naturally
paired delimiters (such as parentheses), the REPLACEMENTLI ST hasits own pair of delimiters,
which may or may not be naturally paired ones - for example, t r [A- Z] [a- z] or
tr(+-*/)/ ABCD .

Modifiers:

Modifier |Meaning
C Complement the SEARCHLI ST.
d Delete found but unreplaced characters.

S Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLI ST character set is complemented; that is, the effective search
list consists of all the characters not in SEARCHLI ST. If the /d modifier is specified, any characters
specified by SEARCHLI ST but not given areplacement in REPLACEMENTLI ST are deleted. (Note that

thisis slightly more flexible than the behavior of sometr/// programs, which delete anything they find in

the SEARCHLI ST, period.) If the /s modifier is specified, sequences of characters that were translated to
the same character are squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLI ST is aways interpreted exactly as specified. Otherwise,
iIf the REPLACEMENTLI ST is shorter than the SEARCHLI ST, the final character is replicated until itis
long enough. If the REPLACEMENTLI ST isnull, the SEARCHLI ST isreplicated. This latter is useful for
counting charactersin aclass or for squashing character sequencesin aclass.

Examples:

SARGV[1] =~ tr/ A-Zl a-z/; # canonicalize to | ower case
$cnt = tr/*/*/; # count the stars in $_

$cnt = $sky =~ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
tr/a-zA-2Z//s; # bookkeeper -> bokeper

($HOST = $host) =~ tr/a-z/ A Z/;
tr/a-zA-2Z/ |Ics; # change non-al phas to single space

tr [\200-\377]
[\000-\177]; # delete 8th bit

If multiple trandlations are given for a character, only the first one is used:
t r/ AAA/ XYZ/

will tranglate any A to X.

Note that because the trandation table is built at compile time, neither the SEARCHLI ST nor the
REPLACEMENTLI ST are subject to double quote interpolation. That means that if you want to use
variables, you must use an eval:

eval "tr/$oldlist/$newist/";
die $@if $@

eval "tr/$oldlist/$newist/, 1" or die $@

One more note: if you want to change your text to uppercase or lowercase, it's better to usethe\ Uor \ L
sequences in a double-quoted string, since they will pay attention to locale information, but
tr/a-z/ A-Z/ wont.

Previous: 2.3 Programming Next: 2.5
Terms Perl Operators
2.3 Terms Book 2.5 Operators

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.4 Pattern Chapter 2 Next: 2.6 Statements and
Matching The Gory Details Declarations

2.5 Operators

The terms of an expression often need to be combined and modified in various ways, and that's what
operators are for. The tightness with which operators bind is controlled by the precedence of the
operators. Perl operators have the following associativity and precedence, listed from highest precedence
to lowest.[27]

[27] Classic Camel readers will note that we reversed this table from the old edition. The
higher precedence operators are now higher on the page, which makes some kind of
metaphorical sense.

Associativity |Operators
Left Terms and list operators (leftward)
Left ->

Nonassociative |++ - -

Right **

Right ' ~ \ and unary + and -
L eft = I~

L eft * | %X

L eft + -

L eft << >>

Nonassociative | Named unary operators

Nonassociative [< > <= >= |t gt |le ge

Nonassociative (== | = <=> eq ne cnp
L eft &

L eft | ~

Left &&

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

L eft | |
Nonassociative |. .
Right ?:
Right = += -= *=andsoon

Left . =>

Nonassociative | List operators (rightward)

Right not
L eft and
L eft or Xxor

It may seem like there are too many precedence levels. Well, you're right, there are. Fortunately, there are
two things going for you here. First, the precedence levels as they're defined usually follow your
intuition, presuming you're not psychotic. And second, if you're merely neurotic, you can always put in
extra parentheses to relieve your anxiety.

Note that any operators borrowed from C keep the same precedence relationship with each other, even
where C's precedence is dightly screwy. (This makes learning Perl easier for C folks.)

In the following sections, these operators are covered in precedence order. With very few exceptions,
these all operate on scalar values only, not list values. We'll mention the exceptions as they come up.

2.5.1 Terms and List Operators (Leftward)

Any termis of highest precedence in Perl. These include variables, quote and quotelike operators, any
expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren't
really any functionsin this sense, just list operators and unary operators behaving as functions because
you put parentheses around their arguments. These operators are al covered in Chapter 3.

Now, listen carefully. Here are a couple of rulesthat are very important and simplify things greatly, but
may occasionally produce counterintuitive results for the unwary. If any list operator (such as print) or

any named unary operator (such as chdir) isfollowed by aleft parenthesis as the next token on the same
line,[28] the operator and its arguments within parentheses are taken to be of highest precedence, just like

anormal function call. Theruleis: If it looks like afunction call, it isafunction call. Y ou can make it
look like a non-function by prefixing the arguments with a unary plus, which does absolutely nothing,
semantically speaking - it doesn't even convert the argument to numeric.

[28] And we nearly had you convinced Perl was afree-form language.

For example, since || has lower precedence than chdir, we get:

chdir $foo || die; # (chdir $foo) || die
chdi r ($f 00) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die

chdir +($foo) || die; # (chdir $foo) || die

but, because * has higher precedence than chdir, we get:

chdir $foo * 20; chdir ($foo * 20)
chdir ($foo) * 20; (chdir $foo) * 20
chdir ($foo) * 20; (chdir $foo) * 20
chdir +($foo) * 20; chdir ($foo * 20)

HHHH

Likewise for numeric operators:

rand 10 * 20;
rand(10) * 20;
rand (10) * 20;
rand +(10) * 20;

rand (10 * 20)
(rand 10) * 20
(rand 10) * 20
rand (10 * 20)

H HHH

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is either
very high or very low depending on whether you look at the left side of the operator or the right side of
it. (That's what the "L eftward" isdoing in thetitle of this section.) For example, in:

@ry = (1, 3, sort 4, 2);

print @ry; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are
evaluated after. In other words, a list operator tends to gobble up all the arguments that follow it, and
then act like a simple term with regard to the preceding expression. Note that you have to be careful with
parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Cbviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # O this.

print ($foo), exit; # O even this.

Also note that:
print ($foo & 255) + 1, "\n"; # prints ($foo & 255)
probably doesn't do what you expect at first glance. Fortunately, mistakes of this nature generally

produce warningslike"Usel ess use of addition in a void context" whenyou usethe
-w command-line switch.

Also parsed asterms arethedo {} andeval {} constructs, aswell as subroutine and method calls,
the anonymous array and hash composers[] and{} , and the anonymous subroutine composer sub {}.

2.5.2 The Arrow Operator

Just asin C and C++, - > isan infix dereference operator. If theright sideiseitheral...] or{...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or alocation
capable of holding a hard reference, if it's an Ivalue (assignable)). More on thisin Chapter 4.

Otherwise, the right side must be a method name or a simple scalar variable containing the method name,
and the value of the left side must either be an object (a blessed reference) or a class name (that is, a
package name). See Chapter 5.

2.5.3 Autoincrement and Autodecrement

The ++ and - - operatorswork asin C. That is, if placed before a variable, they increment or decrement
the variable before returning the value, and if placed after, they increment or decrement the variable after
returning the value. For example, $a++ increments the value of scalar variable $a, returning the value
before it performs the increment. Similarly, - - $b{ (/ (\ w+) /) [0] } decrementsthe element of the
hash %b indexed by the first "word" in the default search variable ($) and returns the value after the
decrement.[29]

[29] OK, so that wasn't exactly fair. We just wanted to make sure you were paying attention.
Here's how that expression works. First the pattern match finds the first word in $_ using the
regular expression \ w+. The parentheses around that causes the word to be returned as a
single-element list value, because the pattern match isin alist context. Thelist context is
supplied by thelist slice operator, (. . .) [0] , which returns the first (and only) element of
the list. That value is then used as the key for the hash, and the hash entry (value) is
decremented and returned. In general, when confronted with a complex expression, analyze
it from the inside out to see what order things happen in.

The autoincrement operator has a little extra built-in magic to it. If you increment avariable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has only been used in string contexts since it was set, and has a value that is not null and
matches the pattern/ ~[a- zA- Z] *[0- 9] *$/ , the increment is done as a string, preserving each
character within its range, with carry:

print ++($foo = '99'); # prints '100'
print ++($foo = '"a0'); # prints 'al'
print ++($foo = 'Az"); # prints 'Ba'
print ++($foo ="'2zz"); # prints 'aaa'

The autodecrement operator, however, is not magical.

2.5.4 Exponentiation

Binary ** isthe exponentiation operator. Note that it binds even more tightly than unary minus, so
-2**4is-(2**4) ,not (- 2) ** 4. The operator isimplemented using C's pow(3) function, which
works with doubles internally. It calculates using logarithms, which means that it works with fractional
powers, but you sometimes get results that aren't as exact as a straight multiplication would produce.

2.5.5 ldeographic Unary Operators

Most unary operators just have names (see "Named Unary and File Test Operators' below), but some
operators are deemed important enough to merit their own special symbolic representation. Most of these
operators seem to have something to do with negation. Blame the mathematicians.

Unary ! performslogical negation, that is, "not". See also not for alower precedence version of this. The
value of a negated operation is 1 if the operand isfalse (numeric 0, string " 0", null string, or undefined);
otherwise, the value is that of the null string.

Unary - performs arithmetic negation if the operand is numeric. If the operand is an identifier, astring
consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with
aplus or minus, a string starting with the opposite sign is returned. One effect of these rulesis that

- bar ewor d isequivalentto " - bar ewor d" . Thisismost useful for Tk and CGI programmers.

Unary ~ performs bitwise negation, that is, 1's complement. For example, on a 32-bit machine, ~123 is
4294967172. But you knew that already.

(What you perhaps didn't know isthat if the argument to ~ happensto be a string instead of a number, a
string of identical length is returned, but with all the bits of the string complemented. Thisis afast way to
flip alot of bitsal at once. See aso the bitwise logical operators, which also have stringish variants.)

Unary + has no semantic effect whatsoever, even on strings. It is syntactically useful for separating a
function name from a parenthesized expression that would otherwise be interpreted as the complete list
of function arguments. (See examples above under the section "Terms and List Operators'.)

Unary \ creates areference to whatever follows it (see Chapter 4). Do not confuse this behavior with the

behavior of backslash within a string, although both forms do convey the notion of protecting the next
thing from interpretation. This resemblance is not entirely accidental.

The\ operator may also be used on a parenthesized list value in alist context, in which case it returns
references to each element of thelist.

2.5.6 Binding Operators

Binary =~ binds a scalar expression to a pattern match, substitution, or translation. These operations
search or modify the string $_ by default. The binding operator makes those operations work on some
other string instead. The argument on the right is the search pattern, substitution, or translation. The left
argument iswhat is supposed to be searched, substituted, or translated instead of the default $. The
return value indicates the success of the operation. If the right argument is an expression rather than a
search pattern, substitution, or trandation, it is interpreted as a search pattern at run-time. That is, $_ =~
$pat isequivaentto$_ =~ / $pat /. Thisislessefficient than an explicit search, since the pattern
must be compiled every time the expression is evaluated. (But / $pat / o doesn't recompile it because of
the /o modifier.)

Binary | ~ isjust like =~ except the return value is negated in the logical sense. The following
expressions are functionally equivalent:

$string !~ /pattern/

not $string =~ /pattern/

We said that the return value indicates success, but there are many kinds of success. Substitutions return
the number of successful substitutions, as do tranglations. (In fact, the tranglation operator is often used to
count characters.) Since any non-zero result istrue, it all works out. The most spectacular kind of true
valueisalist value: in alist context, pattern matches can return substrings matched by the parenthesesin
the pattern. But again, according to the rules of list assignment, the list assignment itself will return true
if anything matched and was assigned, and fal se otherwise. So you sometimes see things like:
if (($k,$v) = $string =~ m (\w+)=(\w)/) {

print "KEY $k VALUE $v\n";
}

Let's pick that apart. The =~ binds $st r i ng to the pattern match on the right, which is scanning for
occurrences of things that look like KEY=VALUE in your string. It'sin alist context because it's on the
right side of alist assignment. If it matches, it does alist assignment to $k and $v. Thelist assignment
itself isin ascalar context, so it returns 2, the number of values on the right side of the assignment. And
2 happens to be true, since our scalar context is also a Boolean context. When the match fails, no values
are assigned, which returns O, which is false.

2.5.7 Multiplicative Operators

Perl provides the C-like operators* (multiply), / (divide), and %(modulus). The* and/ work exactly
as you might expect, multiplying or dividing their two operands. Division is done in floating-point,
unless you've used the integer library module.

The %operator converts its operands to integers before finding the remainder according to integer
division. For the same operation in floating-point, you may prefer to usethef nod() function from the
POSIX module (see Chapter 7).

Binary x isthe repetition operator. In scalar context, it returns a concatenated string consisting of the left
operand repeated the number of times specified by the right operand.

print '-' x 80; # print row of dashes

print "\t" x ($tab/8), ' ' x ($tab¥B); # tab over

In list context, if the left operand isalist in parentheses, the x works as a list replicator rather than a
string replicator. Thisisuseful for initializing all the elements of an array of indeterminate length to the
same value:

@nes = (1) x 80; # alist of 80 1's

@nes = (5) x @nes; # set all elements to 5

Similarly, you can aso use x to initialize array and hash slices:
@xeys = gwWm perls before sw ne);
@ash{ Geys} = ("") x @eys;

If this mystifies you, note that @xeys is being used both as alist on the left side of the assignment, and
as ascaar value (returning the array length) on the right side of the assignment. The above has the same

effect on %4hash as:

$hash{perl s}
$hash{ bef or e} :
$hash{swi ne} "

2.5.8 Additive Operators

Strangely enough, Perl also has the customary + (addition) and - (subtraction) operators. Both operators
convert their arguments from strings to numeric values if necessary, and return a numeric result.

Additionally, Perl provides a string concatenation operator ". ". For example:
$al nost = "Fred" . "Flintstone"; # returns FredFlintstone

Note that Perl does not place a space between the strings being concatenated. If you want the space, or if
you have more than two strings to concatenate, you can use the join operator, described in Chapter 3.

Most often, though, people do their concatenation implicitly inside a double-quoted string:
$full name = "$firstnanme $l ast nane”;

2.5.9 Shift Operators

The bit-shift operators (<< and >>) return the value of the left argument shifted to the left (<<) or to the
right (>>) by the number of bits specified by the right argument. The arguments should be integers. For
example:

1 << 4; # returns 16
32 >> 4; # returns 2

2.5.10 Named Unary and File Test Operators

Some of "functions" described in Chapter 3 are really unary operators, including:

-X (filetests) | gethostbyname |localtime |rmdir
aarm getnetbyname |log scalar
caller getpgrp | stat sin
chdir getprotobyname | my sleep
chroot glob oct sgrt
CoS gmtime ord srand
defined goto guotemeta | stat
delete hex rand uc

do int readlink | ucfirst
eval lc ref umask

exists Icfirst require undef

exit length reset

exp local return

These are all unary operators, with a higher precedence than some of the other binary operators. For
example:

sleep 4 | 3;

does not sleep for 7 seconds; it slegps for 4 seconds, and then takes the return value of sleep (typically
zero) and ORs that with 3, asif the expression were parenthesized as.

(sleep 4) | 3;

Compare this with:
print 4 | 3;

which does take the value of 4 ORed with 3 before printing it (7 in this case), asif it were written:
print (4 | 3);

Thisis because print isalist operator, not a simple unary operator. Once you've learned which operators
are list operators, you'll have no trouble telling them apart. When in doubt, you can always use
parentheses to turn a named unary operator into a function. Remember, if it looks like afunction, itisa
function.

Another funny thing about named unary operators is that many of them default to $_if you don't supply
an argument. However, if the thing following the named unary operator looks like it might be the start of
an argument, Perl will get confused. When the next character in your program is one of the following
characters, the Perl tokener returns different token types depending on whether aterm or operator is
expected:

Char |Operator Term
+ Addition Unary plus
- Subtraction Unary minus

* Multiplication *typegl ob

/ Division / pattern/

< Lessthan, left shift [<HANDLE>, <<END
Concatenation . 3333

? ?: ?pattern?

% Modulo Yassoc

& & && &subr out i ne

So atypical boo-boois:
next if length < 80;

in which the < looks to the parser like the beginning of the <> input symbol (aterm) instead of the "less
than" (an operator) you were thinking of. There's really no way to fix this, and still keep Perl
pathologically eclectic. If you're so incredibly lazy that you cannot bring yourself to type the two
characters $, then say one of these instead:

next if length() < 80;
next if (length) < 80;
next if 80 > | ength;

next unless | ength >= 80;

A filetest operator is aunary operator that takes one argument, either a filename or afilehandle, and tests
the associated file to see if something istrue about it. If the argument is omitted, it tests $, except for

- t, whichtests STDI N. Unless otherwise documented, it returns 1 for trueand " " for false, or the
undefined value if the file doesn't exist. The operator may be any of the following:

Operator |Meaning

-r Fileisreadable by effective uid/gid.
-wW Fileiswritable by effective uid/gid.
- X Fileis executable by effective uid/gid.
-0 File is owned by effective uid.

-R Fileisreadable by real uid/gid.

-W Fileiswritable by real uid/gid.

- X Fileis executable by real uid/gid.
-0 Fileisowned by real uid.

-e File exists.

-z File has zero size.

-S File has non-zero size (returns size).
- f Fileisaplainfile.

-d Fileisadirectory.

- Fileisasymbolic link.

-p Fileisanamed pipe (FIFO).

-S File is a socket.

-b Fileisablock specidl file.

-C Fileis acharacter specid file.

-t Filehandle is opened to aftty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T Fileisatext file.

-B Fileisabinary file (opposite of - T).

-M Age of file (at startup) in days since modification.
-A Age of file (at startup) in days since last access.
-C Age of file (at startup) in days since inode change.

The interpretation of the file permission operators-r, - R, - w, - W - X, and - X is based solely on the
mode of the file and the user and group IDs of the user. There may be other reasons you can't actually
read, write, or execute the file, such as Andrew File System (AFS) access control lists. Also note that for
the superuser, - r , - R, - w, and - Walwaysreturn 1, and - X, and - X return 1 if any execute bit isset in
the mode. Scripts run by the superuser may thus need to do a stat in order to determine the actual mode
of thefile, or temporarily set the uid to something else. Example:

while (<>) {

chonp;

next unless -f $; # ignore "special" files
}

Notethat - s/ a/ b/ doesnot do a negated substitution. Saying - exp($f 00) still works as expected,
however - only single letters following a minus are interpreted asfile tests.

The- T and - B switcheswork as follows. Thefirst block or so of the file is examined for odd characters
such as strange control codes or characters with the high bit set. If too many odd characters (>30%) are
found, it'sa- Bfile, otherwiseit'sa- T file. Also, any file containing null in the first block is considered
abinary file. If - T or - Bisused on afilehandle, the current input (standard 1/0 or "stdio") buffer is
examined rather than the first block of the file. Both - T and - B return true on anull file, or on afile at
EOF (end of file) when testing afilehandle. Because you have to read afile to do the - T test, on most
occasionsyou want tousea- f against thefilefirst, asin:

next unless -f $file && -T _;

If any of the filetests (or either the stat or Istat operators) are given the special filehandle consisting of a
solitary underline, then the stat structure of the previous file test (or stat operator) is used, thereby saving
asystem call. (Thisdoesn't work with - t , and you need to remember that Istat and - | will leave values

In the stat structure for the symbolic link, not the real file.)[30] Example:

[30] Likewise, -1 _ will always be false after anormal stat.
print "Can do.\n" if -r $a || -w _ || -x _;

stat ($fil enane);

print "Readable\n" if -r _;
print "Witable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;
print "Text\n" if -T _;

print "Binary\n" if -B _;

Fileagesfor - M - A, and - Carereturned in days (including fractional days) since the time when the
script started running. (Thistimeis stored in the special variable $" T.) Thus, if the file changed after the
script started, you would get a negative time. Note that most times (86,399 out of 86,400, on average) are
fractional, so testing for equality with an integer without using the int function is usually futile.

Examples:

next unless -M$file > .5; # files older than 12 hours
&ewfile if -M$file < 0O; # file is newer than process
&mailwarning if int(-A) == 90; # file ($) accessed 90 days ago today

To reset the script's start time to the current time, change $* T as follows:
$"T = tine;
2.5.11 Relational Operators

Perl has two classes of relational operators. One class operates on numeric values, and the other class
operates on string values. To repeat the table given in the overview:

Numeric | String [Meaning

> gt Greater than

>= ge Greater than or equal to
< | t Less than

<= | e Less than or equal to

These operatorsreturn 1 for true, and " " for false. String comparisons are based on the ASCII collating
sequence, and unlike in some languages, trailing spaces count in the comparison. Note that relational
operators are non-associating, which meansthat $a < $b < $c isasyntax error.

2.5.12 Equality Operators

The equality operators are much like the relational operators.

Numeric | String [Meaning

== eq Equal to

= ne Not equal to

<=> cnp | Comparison, with signed result

The equal and not-equal operatorsreturn 1 for true, and " " for false (just as the relational operators do).
The <=> and cmp operators return -1 if the left operand isless than the right operand, O if they are equal,
and +1 if the left operand is greater than the right. Although these appear to be very similar to the
relational operators, they do have a different precedencelevel, so$a < $b <=> $c < $dis
syntactically valid.

For reasons that are apparent to anyone who has seen Sar Wars, the <=> ogperator is known as the
"'spaceship” operator.

2.5.13 Bitwise Operators

Like C, Perl has bitwise AND, OR, and XOR (exclusive OR) operators: &, | , and ~. Note from the table
at the start of this section that bitwise-AND has a higher precedence. These operators work differently on
numeric values than they do on strings. (Thisis one of the few places where Perl cares about the
difference.) If either operand is a number (or has been used as a number), then both operands are
converted to type integer, and the bitwise operation is performed between the two integers. These
integers are guaranteed to be at least 32 bits long, but may be 64 bits on some machines. The point is that
there's an arbitrary limit imposed by the machine's architecture.

If both operands are strings (and have not been used as numbers since being set), these operators do
bitwise operations between corresponding bits from the two strings. In this case, there's no arbitrary limit,
since strings aren't arbitrarily limited in size. If one string is longer than the other, the shorter string is
considered to have a sufficient number of O bits on the end to make up the difference.

For example, if you AND together two strings:
"123.45" & "234.56"

you get another string:
"020. 44"

But if you AND together a string and a number:
"123.45" & 234.56

The string isfirst converted to a number, giving:
123. 45 & 234.56

The numbers are then converted to integer:

123 & 234
which evaluates to 106.

Note that all bit strings are true (unless they come out to being the string "0"). This means that tests of
the form:

if ("fred" & "\1\2\3\4") { ... }
would need to be written instead as:
if (("fred" & "\1\2\3\4") =~ /[™MO0]/) { ... }

2.5.14 C-style Logical (Short Circuit) Operators

Like C, Perl providesthe && (logical AND) and | | (logical OR) operators. They evaluate from left to
right (with && having slightly higher precedence than | |) testing the truth of the statement. These
operators are known as short-circuit operators because they determine the truth of the statement by
evaluating the fewest number of operands possible. For example, if the left operand of an && operator is
false, the right operand is never evaluated because the result of the operator is false regardless of the
value of the right operand.

Example |Name |Result
$a && $b |And |$aif $aisfalse $b otherwise
$a || $b |Or $a if $a istrue, $b otherwise

Such short circuits are not only time savers, but are frequently used to control the flow of evaluation. For
example, an oft-appearing idiom in Perl programsis:

open(FILE, "sonefile") || die "Cannot open sonefile: $'\n";

In this case, Perl first evaluates the open function. If the valueis true (because somefile was successfully
opened), the execution of the die function is unnecessary, and is skipped. Y ou can read thisliterally as
"Open somefileor die!"

The| | and && operators differ from C'sin that, rather than returning O or 1, they return the last value
evaluated. This has the delightful result that you can select the first of a series of values that happens to
be true. Thus, areasonably portable way to find out the home directory might be:

$home = $ENV{ HOVE}

|| $ENV{ LOGDI R}

|| (getpwuid($<))[7]

|| die "You' re honel ess!\n";

Per| also provides lower precedence and and or operators that are more readable and don't force you to
use parentheses as much. They also short-circuit.

2.5.15 Range Operator

The. . range operator isreally two different operators depending on the context. In alist context, it
returns alist of values counting (by ones) from the left value to the right value. Thisis useful for writing
for (1..10) loopsand for doing slice operations on arrays.[31]

[31] Be aware that under the current implementation, atemporary array is created, so you'll
burn alot of memory if you write something like this:

for (1 .. 1 _000_000) {
code
}

Inascalar context, . . returns aBoolean value. The operator is bi-stable, like an electronic flip-flop, and
emulates the line-range (comma) operator of sed, awk, and various editors. Each scalar . . operator
maintains its own Boolean state. It isfalse aslong asitsleft operand isfalse. Once the left operand is
true, the range operator stays true until the right operand is true, after which the range operator becomes
false again. (The operator doesn't become false until the next timeit is evaluated. It can test the right
operand and become fal se on the same evaluation as the one where it became true (the way awk's range
operator behaves), but it still returns true once. If you don't want it to test the right operand until the next
evaluation (which is how sed's range operator works), just use threedots (. . .) instead of two.) Theright
operand is not evaluated while the operator isin the false state, and the left operand is not eval uated
while the operator isin the true state.

The precedenceis alittle lower than | | and &&. The value returned is either the null string for false, or a
sequence number (beginning with 1) for true. The sequence number is reset for each range encountered.
The final sequence number in arange has the string "EQ" appended to it, which doesn't affect its numeric
value, but gives you something to search for if you want to exclude the endpoint. Y ou can exclude the
beginning point by waiting for the sequence number to be greater than 1. If either operand of scalar . . is
anumeric literal, that operand is evaluated by comparing it to the $. variable, which contains the current
line number for your input file. Examples:

As ascalar operator:

if (101 .. 200) { print; } # print 2nd hundred |ines
next line if (1 .. /"$/); # skip header |ines
s/~ > [if (I"$/ .. eof()); # quote body

Asalist operator:

for (101 .. 200) { print; } # prints 101102...199200
@oo0 = @oo[0 .. $#foo0]; # an expensi ve no-op
@oo = @oo[-5 .. -1]; # slice last 5 itens

The range operator (in alist context) makes use of the magical autoincrement algorithm if the operands
are strings.[32] So you can say:

[32] If the final value specified is not in the sequence that the magical increment would
produce, the sequence goes until the next value would be longer than the final value
specified.

@l phabet = ("A .. '"Z);
to get all the letters of the aphabet, or:

$hexdigit = (0 .. 9, "a" .. "f'")[$num & 15];

to get a hexadecimal digit, or:

@2 = ('01" .. "31'"); print $z2[$nday];

to get dates with leading zeros. Y ou can aso say:

@onbos = ('aa' .. 'zz');

to get all combinations of two lowercase letters. However, be careful of something like:
@i gconbos = (' aaaaaa' .. 'zzzzzz');

since that will require lots of memory. More precisaly, it'll need space to store 308,915,776 scalars. Let's
hope you allocated alarge swap partition. Perhaps you should consider an iterative approach instead.

2.5.16 Conditional Operator

Trinary ?: isthe conditional operator, just asin C. It works as:
TEST EXPR ? | F_TRUE EXPR : | F_FALSE EXPR

much like an if-then-else, except that it can safely be embedded within other operations and functions. If
the TEST _EXPRistrue, only thel F_ TRUE EXPRisevaluated, and the value of that expression
becomes the value of the entire expression. Otherwise, only the| F_FALSE EXPRisevaluated, and its
value becomes the value of the entire expression.

printf "I have % dog%.\n", $n,
($n == 1) 2 "" . "s";

Scalar or list context propagates downward into the second or third argument, whichever is selected.
(Thefirst argument is alwaysin scalar context, since it's a conditional .)

$a = $ok ? $b : $c; # get a scalar
@ = $ok ? @ : @; # get an array
$a = ok ? @ : @; # get a count of elenments in one of the arrays

Y ou can assign to the conditional operator[33] if both the second and third arguments are legal Ivalues

(meaning that you can assign to them), provided that both are scalars or both are lists (or Perl won't know
which context to supply to the right side of the assignment):

[33] Thisis not necessarily guaranteed to contribute to the readability of your program. But
it can be used to create some cool entriesin an Obfuscated Perl contest.

($a_or b ? $a : $b) = $c; # sets either $a or $b to equal $c

2.5.17 Assignment Operators

Perl recognizes the C assignment operators, as well as providing some of its own. There are quite afew
of them:

= *x — += * = &= <<= =
-= /| = | = >>= | | =
= % =

Each operator requires an lvalue (avariable or array element) on the left side, and some expression on
the right side. For the simple assignment operator, =, the value of the expression is stored into the
designated variable. For the other operators, Perl evaluates the expression:

$var OP= $val ue

asif it were written:
$var = $var OP $val ue

except that $var isevaluated only once. Compare the following two operations.
$var [$a++] += $val ue; # $a is increnmented once
$var [$a++] = $var[$a++] + $val ue; # $a is increnented tw ce

Unlikein C, the assignment operator produces avalid lvalue. Modifying an assignment is equivalent to
doing the assignment and then modifying the variable that was assigned to. Thisis useful for modifying a
copy of something, like this:

($tnmp = $gl obal) += $constant;

which is the equivalent of:

$tmp = $gl obal + $constant;

Likewise:

($a += 2) *= 3;

is equivalent to:

$a += 2;

$a *= 3;

That's not actually very useful, but you often see thisidiom:

($new = $old) =~ s/fool/bar/g;

In all cases, the value of the assignment is the new value of the variable. Since assignment operators

associ ate right-to-left, this can be used to assign many variables the same value, asin:
$a = $b = $c = O;

which assigns 0 to $c, and the result of that (still 0) to $b, and the result of that (still 0) to $a.

List assignment may be done only with the plain assignment operator, =. In alist context, list assignment
returns the list of new values just as scalar assignment does. In a scalar context, list assignment returns

the number of values that were available on the right side of the assignment, as we mentioned earlier in
"List Valuesand Arrays'. Thismakesit useful for testing functions that return a null list when they're
"unsuccessful”, asin:

while (($key, $value) = each %gloss) { ... }
next unl ess ($dev, $ino, $node) = stat $fil e;

2.5.18 Comma Operators

Binary ", " isthe comma operator. In a scalar context it evaluates its left argument, throws that value
away, then evaluates its right argument and returns that value. Thisisjust like C's comma operator. For
example:

$a = (1, 3);

assigns 3 to $a. Do not confuse the scalar context use with the list context use. In alist context, it's just
the list argument separator, and inserts both its argumentsinto the LI ST. It does not throw any values

away.
For example, if you change the above to:

@ = (1, 3);
you are constructing a two-element list, while:
atan2(1, 3);

is calling the function atan2 with two arguments.

The => digraph is mostly just a synonym for the comma operator. It's useful for documenting arguments
that come in pairs. It also forces any identifier to the left of it to be interpreted as a string.

2.5.19 List Operators (Rightward)

Theright side of alist operator governs al the list operator's arguments, which are comma separated, so
the precedence of list operatorsislooser than commaif you're looking to the right.

2.5.20 Logical and, or, not, and xor

As more readable alternativesto &, | | , and ! , Perl provides the and, or and not operators. The
behavior of these operatorsisidentical - in particular, they short-circuit the same way.[34]

[34] Obviously the unary not doesn't short circuit, just as! doesn't.

The precedence of these operators is much lower, however, so you can safely use them after alist
operator without the need for parentheses:
unlink "al pha", "beta", "ganm"

or gripe(), next LINE

With the C-style operators that would have to be written like this:

unl i nk("al pha", "beta", "gama")
|| (gripe(), next LINE);

Thereisalso alogical xor operator that has no exact counterpart in C or Perl, since the other XOR
operator (") works on bits. The best equivalent for $a xor $b isperhaps! $a ! = ! $b.[35] This

operator can't short-circuit either, since both sides must be evaluated.

[35] Onecould alsowrite! $a ~ !$boreven$a ? !'$b : !! $b, of course. The point
isthat both $a and $b have to evaluate to true or false in a Boolean context, and the
existing bitwise operator doesn't provide a Boolean context.

2.5.21 C Operators Missing from Perl

Hereiswhat C hasthat Perl doesn't:

unary &
The address-of operator. Perl's\ operator (for taking areference) fills the same ecological niche,
however:
$ref to var = \$var;

But references are much safer than addresses.
unary *

The dereference-address operator. Since Perl doesn't have addresses, it doesn't need to dereference
addresses. It does have references though, so Perl's variable prefix characters serve as dereference
operators, and indicate type aswell: $, @ %and &. Oddly enough, there actually isa* dereference
operator, but since * isthe funny character indicating a typeglob, you wouldn't use it the same
way.

(TYPE)

The typecasting operator. Nobody likes to be typecast anyway.

Previous: 2.4 Pattern Programming Next: 2.6 Statements and
Matching Perl Declarations
2.4 Pattern Matching Book 2.6 Statements and
Index Declarations

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.5 Chapter 2 . Next: 2.7
Operators The Gory Details Subroutines

2.6 Statements and Declarations

A Perl program consists of a sequence of declarations and statements. A declaration may be placed
anywhere a statement may be placed, but it hasits primary (or only) effect at compile time. (Some
declarations do double duty as ordinary statements, while others are totally transparent at run-time.) After
compilation, the main sequence of statements is executed just once, unlike in sed and awk scripts, where
the sequence of statementsis executed for each input line. While this means that you must explicitly loop
over the lines of your input file (or files), it also means you have much more control over which files and
which lines you look at.[36] Unlike many high-level languages, Perl requires only subroutines and report
formats to be explicitly declared. All other user-created objects spring into existence with anull or O
value unless they are defined by some explicit operation such as assignment.[37]

[36] Actually, I'm lying - it is possible to do an implicit loop with either the -n or -p
command-line switch. It's just not the mandatory default likeit isin sed and awk.

[37] The -w command-line switch will warn you about using undefined values.

Y ou may declare your variables though, if you like. You may even make it an error to use an undeclared
variable. Thiskind of disciplineisfine, but you have to declare that you want the discipline. (This seems
appropriate, somehow.) Seeuse stri ct inthe section on"Pragmas’ later in this chapter.

2.6.1 Simple Statements

A simple statement is an expression evaluated for its side effects. Every simple statement must end in a
semicolon, unlessit isthe final statement in ablock. In this case, the semicolon is optional (but strongly
encouraged in any multiline block, since you may eventually add another line).

Even though some operators (likeeval {} anddo {}) look like compound statements, they aren't.
True, they alow multiple statements on the inside, but that doesn't count. From the outside those
statements are just terms in an expression, and thus need an explicit semicolon if used asthelast itemin
a statement.

Any simple statement may optionally be followed by a single modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

I f EXPR

unl ess EXPR
whi | e EXPR

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

until EXPR

The if and unless modifiers work pretty much as you'd expect if you speak English:

$trash->take('out') if $you | ove ne;
shutup() unless $you want _ne_to_| eave;

The while and until modifiers evaluate repeatedly as long as the modifier istrue:

$expression++ while -e "$fi | e$expressi on”;
Kiss('ne') until $I_die;

The while and until modifiers also have the usual while-loop semantics (conditional evaluated first),
except when appliedtoado {} (or to the now-deprecated do- SUBROUTI NE statement), in which case
the block executes once before the conditional is evaluated. Thisis so that you can write loops like:
do {

$li ne = <STDI N>;

} unti | $line eq ".\n";

See the do entry in Chapter 3. Note also that the |loop-control statements described later will not work in

this construct, since modifiers don't take loop labels. Sorry. Y ou can always wrap another block around it
to do that sort of thing. Or write areal loop with multiple loop-control commands inside. Speaking of
real loops, we'll talk about compound statements next.

2.6.2 Compound Statements

A sequence of statements that defines a scopeis called a block. Sometimes a block is delimited by the
file containing it (in the case of either a"required” file, or the program as awhole), and sometimesiit's

delimited by the extent of astring (in the case of an eval). But generally, ablock is delimited by braces
({}). When we mean a block with braces, we'll use the term BLOCK.,

Compound statements are built out of expressions and BLOCKSs. The expressions are built out of the
terms and operators we've already discussed. In our syntax diagrams, we'll use the word EXPR to indicate
a place where you can use an expression.

The following conditionals and loops may be used to control flow:

i f (EXPR) BLOCK

i f (EXPR) BLOCK el se BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ...

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

LABEL whil e (EXPR) BLOCK
LABEL while (EXPR) BLOCK conti nue BLOCK

LABEL for (EXPR, EXPR;, EXPR) BLOCK

LABEL foreach VAR (LI ST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK conti nue BLOCK

Note that unlike in C and Pascal, these are defined in terms of BLOCKS, not statements. This means that
the braces are required - no dangling statements allowed. If you want to write conditionals without braces
there are several other waysto do it. The following all do the same thing:

if (!open(FOO, $foo)) { die "Can't open $foo: $!'"; }
die "Can't open $foo: $!" unless open(FOO, $foo0);
open(FOO, $foo) or die "Can't open $foo: $!"; # FQOO or bust!

open(FQOO, $foo) ? 'hi nomi : die "Can't open $foo: $!'";
a bit exotic, that |ast one

Y our readers would tend to prefer the third of those under most circumstances.

2.6.3 If Statements

Theif statement is straightforward. Since BLOCKSs are always bounded by braces, there is never any
ambiguity about which if an else or an elsif goes with. In any particular sequence of if/elsif/else BLOCKS,
only the first one that has a true condition will be executed. If none of them is true, then the else BLOCK,
if thereisany, is executed.

If you use unlessin place of if, the sense of thetest isreversed. That is:
unl ess ($0S_ERROR)

Is equivalent to:[38]

[38] $OS_ERRCRisthesameas $! if youuse Engli sh.
i f (not $0S_ERROR)
2.6.4 Loop Statements

All compound loop statements have an optional LABEL. If present, the label consists of an identifier
followed by acolon. It's customary to make the label upper case to avoid potential conflict with reserved
words, and so it stands out better. (But don't use BEG N or END!)

2.6.4.1 While statements

The while statement repeatedly executes the block aslong as the EXPRis true. If the word whileis
replaced by the word until, the sense of the test isreversed. The conditional is still tested before the first
iteration, though.

The while statement has an optional extra block on the end called a continue block. Thisisablock that

Is executed every time the block is continued, either by falling off the end of the first block, or by an
explicit loop-control command that goes to the next iteration. The continue block is not heavily used in
practice, but it'sin there so we can define the for loop rigorously. So let's do that.

2.6.4.2 For loops

The C-style for loop has three semicolon-separated expressions within its parentheses. These three
expressions function respectively asthe initialization, the condition, and the re-initialization expressions
of the loop. (All three expressions are optional, and the condition, if omitted, is assumed to betrue.) The
for loop can be defined in terms of the corresponding while loop.

Thus, the following:
for ($i = 1; $i < 10; $i++) {

}
Isthe same as:
$i = 1;
while ($i < 10) {
}
conti nue {
$i ++;
}

(Defining the for loop in terms of a continue block allows us to preserve the correct semantics even
when the loop is continued viaa next statement. Thisisunlike C, in which there is no way to write the

exact equivalent of a continued for loop without chicanery.)

If you want to iterate through two variables simultaneously, just separate the parallel expressions with
commeas:
for ($i =0, $bit = 1; $mask & $bit; $i++, $bhit <<= 1) {
print "Bit $i is set\n";
}

Besides the normal array index looping, for can lend itself to many other interesting applications. There
doesn't even have to be an explicit loop variable. Here's one exampl e that avoids the problem you get into
If you explicitly test for end-of-file on an interactive file descriptor, causing your program to appear to
hang.
$on_a tty = -t STDIN && -t STDOUT;
sub pronpt { print "yes? " if $on a tty }
for (pronpt(); <STDIN>; prompt()) {

do sonet hi ng
}

Onefina application for the for loop results from the fact that al three expressions are optional. If you
do leave all three expressions out, you have written an "infinite" loop in away that is customary in the

culture of both Perl and C:

for (;;) {
}

If the notion of infinite loops bothers you, we should point out that you can always terminate such aloop
from the inside with an appropriate loop-control command. Of course, if you're writing the code to
control a cruise missile, you may not actually need to write aloop exit. The loop will be terminated
automatically at the appropriate moment.[39]

[39] That is, the fallout from the loop tends to occur automatically.
2.6.4.3 Foreach loops

The foreach loop iterates over alist value and sets the control variable (VAR) to be each element of the
list in turn:

foreach VAR (LI ST) {

}

The variable isimplicitly local to the loop and regains its former value upon exiting the loop. If the
variable was previously declared with my, that variable instead of the global oneis used, but it's still

localized to the loop.

The foreach keyword is actually a synonym for the for keyword, so you can use for each for readability
or for for brevity. If VARisomitted, $_isused. If LI ST isan actual array (as opposed to an expression
returning alist value), you can modify each element of the array by modifying VAR inside the loop.
That's because the for each loop index variable is an implicit alias for each item in the list that you're
looping over. Our first two examples modify an array in place:

for (@ry) { s/hanfturkey/ } # substitution
foreach $elem (@l enents) { # multiply by 2

$el em *= 2;
}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM) { # do a countdown
print $count, "\n"; sleep(l);

}

for $count (reverse 'BOOM, 1..10) { # sane thing
print $count, "\n"; sleep(l);

}

for Sitem (split /:[\\\n:]1*/, $TERMCAP) { # any LI ST expression
print "ltem $itemn";

foreach $key (sort keys %ash) { # sorting keys
print "$key => $hash{$key}\n";
}

That last one is the canonical way to print out the values of a hash in sorted order.

Note that there is no way with for each to tell where you arein alist. Y ou can compare adjacent elements
by remembering the previous one in a variable, but sometimes you just have to break down and write an
ordinary for loop with subscripts. That's what for isthere for, after all.

Here's how a C programmer might code up a particular algorithm in Perl:
for ($i = 0; $i < @ryl; $i++) {
for ($j = 0; $ < @ry2; $j++) {
if ($aryl[$i] > $ary2[$j]) {
| ast; # can't go to outer :-(
}

Saryl[$i] += Sary2[$j];
}

this is where that | ast takes ne

}

Whereas here's how a Perl programmer more comfortable with list processing might do it:

WD: foreach $this (@ryl) {
JET: foreach $that (@ry2) {
next WD if $this > $that;
$this += $that;

}

See how much easier thisis? It's cleaner, safer, and faster. It's cleaner becauseit'sless noisy. It's safer
because if code gets added between the inner and outer loops later on, the new code won't be accidentally
executed: next explicitly iterates the other loop rather than merely terminating the inner one. And it's

faster because Perl executes aforeach statement more rapidly than it would the equivalent for loop
because the elements are accessed directly instead of through subscripting.

Like the while statement, the for each statement can also take a continue block.

We keep dropping hints about next, but now we're going to explain it.

2.6.4.4 Loop control

We mentioned that you can put a LABEL on aloop to give it aname. The loop's LABEL identifies the
loop for the loop-control commands next, last, and redo. The LABEL names the loop as awhole, not just
the top of the loop. Hence, aloop-control command referring to the loop doesn't actually "go to" the loop

label itself. Asfar as the computer is concerned, the label could just as easily have been placed at the end
of the loop. But people like things labeled at the top, for some reason.

L oops are typically named for the item the loop is processing on each iteration. This interacts nicely with
the loop-control commands, which are designed to read like English when used with an appropriate |abel
and a statement modifier. The archetypical loop processes lines, so the archetypical loop label isLI NE: ,
and the archetypical loop-control command is something like this:

next LINE if /7 #/; # di scard comments

The syntax for the loop-control commandsis:

| ast LABEL
next LABEL
redo LABEL

The LABEL isoptional, and if omitted, the loop-control command refers to the innermost enclosing loop.
If you want to break out more than one level, though, you must use a LABEL. Y ou may have as many
loop-control commands in aloop as you like.[40]

[40] In the early days of structured programming, some people insisted that loops and
subroutines have only one entry and one exit. The one-entry notion is still agood idea, but
the one-exit notion has led people to write alot of unnatural code. Much of programming
consists of traversing decision trees. A decision tree naturally starts with asingle trunk but
ends with many leaves. Write your code with the number of loop exits (and function returns)
that is natural to the problem you're trying to solve. If you've declared your local variables
with reasonabl e scopes, things will automatically get cleaned up at the appropriate moment,
whichever way you leave the block.

The last command is like the br eak statement in C (as used in loops); it immediately exits the loop in
guestion. The continue block, if any, is not executed. The following example bombs out of the loop on
the first blank line:

LI NE: while (<STDIN>) {
last LINE if /7~%/; # exit when done wi th header

}

The next command islikethecont i nue statement in C; it skipsthe rest of the current iteration and
starts the next iteration of the loop. If there is a continue BLOCK on the loop, it is always executed just
before the conditional is about to be evaluated again, just like the third part of a C-style for loop. Thusit
can be used to increment aloop variable, even when a particular iteration of the loop has been interrupted
by anext:
LINE: while (<STDIN>) {

next LINE if [/"#/; # skip comments

next LINE if /7$/; # skip blank lines

} continue {
$count ++;
}

The redo command restarts the loop block without evaluating the conditional again. The continue block,

If any, is not executed. This command is normally used by programs that want to lie to themselves about
what was just input.

Suppose you are processing afile like /etc/termcap. If your input line ends with a backslash to indicate
continuation, skip ahead and get the next record.

while (<>) {
chonp;
if (s/\\$//1) {
$.= <>
r edo;
}

now process $_

}

which is Perl shorthand for the more explicitly written version:
LINE: while ($line = <ARGV>) {
chomp($line);
if ($line =~ s/\\$//) {
$line .= <ARGV/>;
redo LI NE;
}

now process $line

}

One more point about loop-control commands. Y ou may have noticed that we are not calling them
"statements'. That's because they aren't statements, though they can be used for statements. (Thisis
unlike C, where br eak and cont i nue are allowed only as statements.) Y ou can amost think of them
as unary operators that just happen to cause a change in control flow. So you can use them anywhere it
makes sense to use them in an expression. In fact, you can even use them where it doesn't make sense.
One sometimes sees this coding error:

open FILE, $file
or warn "Can't open $file: $!\n", next FILE; # WWRONG

Theintent isfine, but thenext FI LE isbeing parsed as one of the argumentsto warn, whichisalist
operator. So the next executes before the war n gets a chance to emit the warning. In this case, it's easily
fixed by turning the war n list operator into the war n function call with some suitably situated
parentheses:

open FILE, $file
or warn("Can't open $file: $!'\n"), next FILE; # okay

2.6.5 Bare Blocks and Case Structures

A BLOCK by itself (Iabeled or not) is semantically equivalent to aloop that executes once. Thus you can
use last to leave the block or redo to restart the block.[41] Note that thisis not true of the blocksin

eval {},sub {},ordo {} commands, which are not loop blocks and cannot be labeled. They can't

be labeled because they're just termsin an expression. Loop control commands may only be used on true
loops, just asthe return command may only be used within a subroutine or eval. But you can always

introduce an extra set of bracesto give yourself abare block, which counts as a loop.

[41] For reasons that may (or may not) become clear upon reflection, a next also exits the
once-through block. Thereis a dlight difference, however, in that a next will execute a
continue block, while alast won't.

The bare block is particularly nice for doing case structures (multiway switches).

SWTCH: {
if (/”abc/) { $abc
i f (/~def/) { $def
if (/~xyzl) { $xyz
$not hing = 1;

1; last SWTCH }
1, last SWTCH, }
1; last SWTCH, }

}

Thereisno official switch statement in Perl, because there are already several ways to write the
equivalent. In addition to the above, you could write: [42]

[42] This codeis actually not as strange as it |00ks once you realize that you can use
loop-control operators within an expression. That's just the normal scalar (C-style) comma
operator between the assignment and the [ast. It evaluates the assignment for its side-effect,

and then exits the loop in question, which happens to be a bare block named SW TCH.

SWTCH ({
$abc = 1, last SWTCH if /”~abc/;
$def =1, last SWTCH if /~def/;
$xyz = 1, last SWTCH if /~xyz/;
$not hing = 1;
}
or:
SWTCH: {
/ "abc/ && do { $abc = 1; last SWTCH };
["def/ && do { $def = 1; last SWTCH, };
/| "xyz/ && do { $xyz = 1; last SWTCH, };
$not hing = 1;
}
or, formatted so it stands out more as a " proper" switch statement:
SWTCH: {
/ “abc/ && do {
$abc = 1;
| ast SW TCH,
}
[Mdef/ && do

$def = 1;

| ast SW TCH;

¥
| "xyzl && do
$xyz = 1;
| ast SW TCH;
¥
$not hing = 1;
}
or:
SW TCH: {
[“abc/ and $abc = 1, | ast SW TCH;
[Ndef / and $def = 1, |ast SW TCH;
| "xyzl/ and $xyz = 1, |l ast SW TCH,
$not hing = 1;
}

or even, horrors:

i f (/~abc/) { $abc =1}
el sif (/~def/) { $def =1}
elsif (/"xyz/) { $xyz =1}
el se { $nothing = 1 }

Y ou might think it odd to write aloop over asingle value, but acommon idiom for a switch statement is
to use foreach's aliasing capability to make atemporary assignment to $ for convenient matching:

for ($sonme_ridiculously | ong variable nanme) ({

/1n Card Nanes/ and do { push @lags, '-e'; last; };
/ Anywher e/ and do { push @lags, '-h'; last; },;
/1n Rulings/ and do { | ast; };

di e "unknown value for formvari abl e where: ~$where'";

}

Notice how the last commands in that example ignorethedo {} blocks, which aren't loops, and exit the
main loop instead.

2.6.6 Goto

Although not for the faint of heart (or the pure of heart, for that matter), Perl does support a goto
command. There are three forms: got o LABEL, got o0 EXPR, and got o &NAIVE.

The got o LABEL form finds the statement labeled with LABEL and resumes execution there. It may not
be used to go inside any construct that requires initialization, such as a subroutine or afor each loop. It
also can't be used to go into a construct that is optimized away. It can be used to go almost anywhere else
within the current block or one you were called from, including out of subroutines, but it's usually better
to use some other construct. The author of Perl has never felt the need to use this form of goto (in Perl,

that is- C is another matter).

The got o0 EXPRformisjust ageneralization of got o LABEL. It expects the expression to return alabel
name, whose location obviously has to be resolved dynamically by the interpreter. (Don't expect thisto
work in compiled Perl.) This allows for computed gotos per FORTRAN, but isn't necessarily
recommended if you're optimizing for maintainability:

goto ("FOO', "BAR', "GLARCH')[S$i];

In almost all caseslikethis, it's usually afar, far better ideato use the structured control flow
mechanisms of next, last, or redo instead of resorting to agoto. For certain applications, a hash of

function pointers or the catch-and-throw pair of eval and die for exception processing can also be
prudent approaches.

Thegot o &NAME form is highly magical, and quite different from an ordinary goto. It substitutes a call

to the named subroutine for the currently running subroutine. Thisis used by AUTOLQAD subroutines
that wish to load another subroutine and then pretend that the other subroutine had been called in the first
place. After the goto, not even caller will be able to tell that this routine was called first. See Chapter 3

for adiscussion of caller and Chapter 7 for AutoL oader.

2.6.7 Global Declarations

Subroutine and format declarations are global declarations. No matter where you place them, they
declare global thingies (actually, package thingies, but packages are global) that are visible from
everywhere. Global declarations can be put anywhere a statement can, but have no effect on the
execution of the primary sequence of statements - the declarations take effect at compile time. Typically
the declarations are put at the beginning or the end of your program, or off in some other file. However,
if you're using lexically scoped private variables created with my, you'll want to make sure your format
or subroutine definition is within the same block scope as the my if you expect to be able to access those

private variables.[43]

[43] For esoteric reasons related to closures, lexicals, and the for each aliasing mechanism,
these my variables must not be the index variable of aforeach loop, because any named

subroutine or format will only have been compiled with the first binding.

Formats are bound to a filehandle and accessed implicitly viathe write function. For more on formats,
see "Formats" later in this chapter.

Subroutines are generally accessed directly, but don't actually have to be defined before calls to them can
be compiled. The difference between a subroutine definition and a mere declaration is that the definition
supplies a BLOCK containing the code to be executed, while the declaration doesn't. A subroutine
definition can function as a declaration if the subroutine hasn't previously been declared.

Declaring a subroutine allows a subroutine name to be used asif it were alist operator from that point
forward in the compilation. Y ou can declare a subroutine without defining it by just saying:

sub nynane;
$ne = nynane $0 or die "can't get nynane";

Note that it functions as a list operator, though, not as a unary operator, so be careful to use or instead of

| | . The| | bindstoo tightly to use after alist operator (at least, not without using extra parenthesesto
turn the list operator back into afunction call).[44] Y ou aso need to define the subroutine at some point,

or you'll get an error at run-time indicating that you've called an undefined subroutine.

[44] Alternately, turn the subroutine into a unary operator with a prototype. But we haven't
talked about that yet.

Subroutine definitions can be loaded from other files with the r equir e statement, but there are two

problems with that. First, the other file will typically insert the subroutine names into a package (a
namespace) of its own choosing, not your package. Second, arequir e happens at run-time, so the

declaration occurs too late to serve as a declaration in the file invoking the require.

A more useful way to pull in declarations and definitions is via the use declaration, which essentially
performs arequire at compile time and then lets you import declarations into your own namespace.
Because it isimporting names into your own (global) package at compile time, this aspect of use can be
considered a kind of global declaration. See Chapter 5 for details on this.

2.6.8 Scoped Declarations

Like global declarations, lexically scoped declarations have an effect at the time of compilation. Unlike
global declarations, lexically scoped declarations have an effect only from the point of the declaration to
the end of the innermost enclosing block. That's why we call them lexically scoped, though perhaps
"textually scoped” would be more accurate, since lexical scoping has nothing to do with lexicons. But
computer scientists the world around know what "lexically scoped” means, so we perpetuate the usage
here.

We mentioned that some aspects of use could be considered global declarations, but there are other
aspects that are lexically scoped. In particular, useis not only used to perform symbol importation but

also to implement various magical pragmas (compiler hints). Most such pragmas are lexically scoped,
includingtheuse strict vars pragmathat forcesyou to use lexically declared variables. See the
section "Pragmas” below.

A package declaration, oddly enough, is lexically scoped, despite the fact that a package is a global
entity. But a package declaration merely declares the identity of the default package for the rest of the
enclosing block. Undeclared, unqualified variable names will be looked up in that package. In asense, a
package isn't declared at all, but springs into existence when you refer to avariable that belongsin the
package. It'sal very Perlish.

The most frequently seen form of lexically scoped declaration is the declaration of my variables. A
related form of scoping known as dynamic scoping appliesto local variables, which are really global

variablesin disguise. If you refer to a variable that has not been declared, its visibility is global by
default, and itslifetime isforever. A variable used at one point in your program is accessible from
anywhere else in the program.[45] If thiswere all there were to the matter, Perl programs would quickly

become unwieldy asthey grew in size. Fortunately, you can easily create private variables using my, and
semi-private values of global variables using local. A my or alocal declaresthe listed variables (in the
case of my), or the values of the listed global variables (in the case of local), to be confined to the

enclosing block, subroutine, eval, or file. If more than one variable islisted, the list must be placed in
parentheses. All listed elements must be legal Ivalues. (For my the constraints are even tighter: the

elements must be simple scalar, array, or hash variables, and nothing else.) Here are some examples of
declarations of lexically scoped variables:

[45] To reiterate, even apparently global variables aren't really global - they're actually
package variables. These work abit like C'sfile static variables, or C++'s class static
variables. Packages are used by libraries, modules, and classes to store their own private
data so it doesn't conflict with datain your main program. If you see someone write
$Sone: : stuff or $Sone' st uf f, they'reusing the $st uf f scalar variable from the
package Somre. See Chapter 5.

ny $nane = "fred";
ny @tuff = ("car", "house", "club");
ny ($vehicle, $hone, $tool) = @tuff;

(These declarations also happen to perform an initializing assignment at run-time.)

A local variable is dynamically scoped, whereas a my variable is|exically scoped. The difference is that

any dynamic variables are also visible to functions called from within the block in which those variables
are declared. Lexical variables are not. They are totally hidden from the outside world, including any
called subroutines (even if it's the same subroutine called from itself or elsewhere - every instance of the
subroutine gets its own copy of the variables).[46] In either event, the variable (or local value) disappears

when the program exits the lexical scope in which the my or local findsitself. By and large, you should
prefer to use my over local becauseit's faster and safer. But you have to use local if you want to

temporarily change the value of an existing global variable, such as any of the specia variables listed at
the end of this chapter. Only aphanumeric identifiers may be lexically scoped. We won't talk much more
about the semantics of local here. Seelocal in Chapter 3 for more information.

[46] An eval, however, can see the lexical variables of the scopeit is being evaluated in, so
long as the names aren't hidden by declarations within the eval itself. Likewise, any

anonymous subroutine (closure) created within the scope will aso see such lexical variables.
See Chapter 4 for more on closures.

Syntactically, my and local are ssimply modifiers (adjectives) on an lvalue expression. When you assign
to amodified lvalue, the modifier doesn't change whether the Ivalue is viewed as ascalar or alist. To
figure how the assignment will work, just pretend that the modifier isn't there. So:

ny ($foo) = <STDI N>;
ny @00 = <STDI N>;

both supply alist context to the right-hand side, while:
ny $f oo = <STDI N>;

supplies a scalar context.

The my binds more tightly (with higher precedence) than the comma does. The following only declares
one variable because the list following my is not enclosed in parentheses:

ny $foo, $bar = 1;

This has the same effect as:

ny $f oo;

$bar = 1;

(You'll get awarning about the mistake if you use -w.)

The declared variable is not introduced (is not visible) until after the current statement. Thus:

my $x = $x;

can be used to initialize the new inner $x with the value of the old outer $x. (Not that we recommend
this style.) On the other hand, the expression:

ny $x = 123 and $x == 123

isfalse unless the old $x just happened to have the value 123.

Declaring alexical variable of a particular name hides any previously declared lexical variable of the
same name. It also hides any unqualified global variable of the same name, but you can always get to the
global variable by explicitly qualifying it with the name of the package the global isin.

For example:
$PackageNane: : var nane

A statement sequence may contain declarations of lexically scoped variables, but apart from declaring
variable names, the declarations act like ordinary statements, and each of them is elaborated within the
sequence of statements asiif it were an ordinary statement.

2.6.9 Pragmas

Many languages allow you to give hints to the compiler. In Perl these hints are conveyed to the compiler
with the use declaration. Some of the pragmas are:

use i nteger
use strict
use lib

use sigtrap
use subs
use vars

All the Perl pragmas are described in Chapter 7, but we'll talk about some of the more useful ones here.

By default, Perl assumes that it must do much of its arithmetic in floating point. But by saying:

use i nteger;

you may tell the compiler that it's okay to use integer operations from here to the end of the enclosing
block. An inner block may countermand this by saying:

no i nteger;

which lasts until the end of that inner block.

Some users may wish to encourage the use of lexical variables. As an aid to catching implicit references
to package variables, if you say:
use strict 'vars';

then any variable reference from there to the end of the enclosing block must either refer to alexical
variable, or must be fully qualified with the package name. A compilation error results otherwise. An
inner block may countermand this with:

no strict 'vars'

Y ou can also turn on strict checking of symbolic references and barewords with this pragma. Often
peoplesay use strict; toturnon all three strictures.

Subroutines and variables that are imported from other modules have specia privilegesin Perl. Imported
subroutines can override many built-in operators, and imported variables are exempt from use

strict 'vars',sinceimportation isconsidered aform of declaration. Sometimes you want to confer
these privileges on your own subroutines and variables. Y ou can do this with:

use subs gw(& ead &wite);

and:
use vars gwm $fee $fie $foe $foo @ic);

Finally, Perl searches for modulesin a standard list of locations. Y ou need to be able to add to that list at
compile time, because when you use modules they're loaded at compile time, and adding to the list at

run-time would be too late. So you can puit:
use lib "/ny/own/lib/directory";

at the front of your program to do this. Note that these last three pragmas all modify global structures,
and can therefore have effects outside of the current lexical scope.

Previous: 2.5 Programming Next: 2.7
Operators Perl Subroutines
2.5 Operators Book 2.7 Subroutines
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

% Programming Perl —

Previous: 2.6 Statements and Chapter 2 _ Next: 2.8
Declarations The Gory Details Formats

2.7 Subroutines

Like many languages, Perl provides for user-defined subroutines. (We'll also call them functions, but
functions are the same thing as subroutines in Perl.) These subroutines may be defined anywhere in the main
program, loaded in from other files viathe do, require, or use keywords, or even generated on the fly using

eval. Y ou can generate anonymous subroutines, accessible only through references. Y ou can even call a
subroutine indirectly using a variable containing either its name or areference to the routine.

To declare a subroutine, use one of these forms:

sub NAMNE; # A "forward" decl aration.

sub NAME (PROTO); # Ditto, but with prototype.

To declare and define a subroutine, use one of these forms:

sub NAME BLOCK # A declaration and a definition.
sub NAME (PROTO BLOCK # Ditto, but with prototype.

To define an anonymous subroutine or closure at run-time, use a statement like:
$subref = sub BLOCK;

To import subroutines defined in another package, say:
use PACKAGE gwW(NAME1 NAME2 NAME3...);

To call subroutines directly:

NAME(LI ST) ; # & is optional wth parentheses.

NAME LI ST; # Parens optional if predeclared/inported.
&NAE; # Passes current @ to subroutine.

To call subroutinesindirectly (by name or by reference):

&bsubref (LI ST) ; # & is not optional on indirect call.
&$subr ef ; # Passes current @ to subroutine.

The Perl model for passing datainto and out of a subroutineis simple: al function parameters are passed as
onesingle, flat list of scalars, and multiple return values are likewise returned to the caller as one single, flat
list of scalars. Aswithany LI ST, any arrays or hashes passed in these lists will interpolate their valuesinto
the flattened list, losing their identities - but there are several ways to get around this, and the automatic list
interpolation is frequently quite useful. Both parameter lists and return lists may contain as many or as few
scalar elements as you'd like (though you may put constraints on the parameter list using prototypes). Indeed,
Perl is designed around this notion of variadic functions (those taking any number of arguments), unlike C,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

where they're sort of grudgingly kludged in so that you can call printf(3).

Now, if you're going to design a language around the notion of passing varying numbers of arbitrary
arguments, you'd better make it easy to process those arbitrary lists of arguments. In the interests of dealing
with the function parameters as alist, any arguments passed to a Perl routine comein asthearray @ . If you
call afunction with two arguments, those would be storedin$_[0] and$_[1] . Since @ isan array, you
can use any array operations you like on the parameter list. (Thisis an area where Perl is more orthogonal
than the typical computer language.) The array @ _isalocal array, but its values are implicit references to the
actual scalar parameters. Thus you can modify the actual parametersif you modify the corresponding
element of @ . (Thisisrarely done, however, since it's so easy to return interesting valuesin Perl.)

The return value of the subroutine (or of any other block, for that matter) is the value of the last expression
evaluated. Or you may use an explicit return statement to specify the return value and exit the subroutine
from any point in the subroutine. Either way, as the subroutineis called in ascalar or list context, so alsois
the final expression of the routine evaluated in the same scalar or list context.

Perl does not have named formal parameters, but in practice all you do is assign the contents of @ to amy
list, which serves nicely for alist of formal parameters. But you don't have to, which is the whole point of the
@ array.

For example, to calculate a maximum, the following routine just iterates over @ directly:

sub max {
ny $max = shift(@);
foreach $foo (@) {
$max = $foo if $max < $f oo;
}

return $max;

}
$best day = max($non, $tue, $wed, $t hu, $fri);

Here's aroutine that ignores its parameters entirely, since it wants to keep a global lookahead variable:
CGet a line, conbining continuation lines that start with whitespace

sub get line {
ny $thisline = $LOOKAHEAD;
LI NE: while ($LOOKAHEAD = <STDI N>) {
i f (SLOOKAHEAD =~ /[\t]/) {
$thisline .= $LOOCKAHEAD;

}
el se {
| ast LI NE;
}
}
$t hi sl i ne;
}
$LOOKAHEAD = <STDI N>; # get first line

while ($_ = get line()) {

}

Use list assignment to a private list to name your formal arguments:

sub maybeset {

ny($key, $value) = @;

$Foo{ $key} = $val ue unl ess $Foof{ $key};
}

This aso hasthe effect of turning call-by-reference into call-by-value (to borrow some fancy terms from
computer science), since the assignment copies the values.

Here's an example of not naming your formal arguments, so that you can modify your actual arguments:

upcase_in($vl, $v2); # this changes $vl1l and $v2
sub upcase_in {

for (@) { trla-z/A-2Z/ }
}

You aren't allowed to modify constants in thisway, of course. If an argument were actually aliteral and you
tried to change it, you'd take an exception (presumably fatal, possibly career-threatening). For example, this
won't work:

upcase_i n("frederick");

It would be much safer if theupcase_i n() function were written to return a copy of its parameters
instead of changing them in place:

($v3, $v4) = upcase($vl, $v2);
sub upcase {
ny @arns = @;
for (@arns) { tr/a-z/A-Z }
wantarray checks whether we were called in Iist context
return wantarray ? @arns : $parns[0];

}

Notice how this (unprototyped) function doesn't care whether it was passed real scalars or arrays. Perl will
see everything as one big, long, flat @ parameter list. Thisis one of the ways where Perl's simple
argument-passing style shines. The upcase function will work perfectly well without changing the
upcase definition even if we feed it things like this:

@ew i st upcase(@istl, @ist2);
@ew i st upcase(split /:/, $var);

Do not, however, be tempted to do this:
(@&, D) = upcase(@istl, @ist2); # WWRONG
Why not? Because, like the flat incoming parameter list, thereturn list isalso flat. So all you have managed

to do hereis store everything in @ and make @ an empty list. See the later section on "Passing References’
for alternatives.

The official name of a subroutine includes the & prefix. A subroutine may be called using the prefix, but the
&isusually optional, and so are the parentheses if the subroutine has been predeclared. (Note, however, that

the & is not optional when you're just naming the subroutine, such as when it's used as an argument to
defined or undef, or when you want to generate a reference to a named subroutine by saying $subr ef
\ &nane. Nor isthe & optional when you want to do an indirect subroutine call with a subroutine name or
reference using the &$subr ef () or & $subr ef } () constructs. See Chapter 4 for more on that.)

Subroutines may be called recursively. If asubroutine is called using the & form, the argument list is
optional, and if omitted, no @ array is set up for the subroutine: the @ array of the calling routine at the
time of the call isvisible to called subroutine instead. Thisis an efficiency mechanism that new users may
wish to avoid.

&f oo(1, 2, 3); # pass three argunents

foo(1l, 2, 3); # the sane

foo(); # pass a null 11 st

&f oo(); # the sane

&f 00; # foo() gets current args, like foo(@) !!

f oo; # like foo() if sub foo pre-declared, el se bareword "foo"

Not only does the & form make the argument list optional, but it also disables any prototype checking on the
arguments you do provide. Thisis partly for historical reasons, and partly for having a convenient way to
cheat if you know what you're doing. See the section on "Prototypes" later in this chapter.

Any variables you use in the function that aren't declared private are global variables. For more on creating
private variables, see my in Chapter 3.

2.7.1 Passing Symbol Table Entries (Typeglobs)

Note that the mechanism described in this section was originally the only way to simulate pass-by-reference
in older versions of Perl. While it still works fine in modern versions, the new reference mechanismis
generally easier to work with. See below.

Sometimes you don't want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with alocal copy. In Perl you can refer to all
objects of a particular name by prefixing the name with astar: * f 0o. Thisis often known as atypeglob,
since the star on the front can be thought of as awildcard match for all the funny prefix characters on
variables and subroutines and such.

When evaluated, atypeglob produces a scalar value that represents all the objects of that name, including any
scalar, array, or hash variable, and aso any filehandle, format, or subroutine. When assigned to, a typeglob
sets up its own name to be an alias for whatever typeglob value was assigned to it. For example:

sub doubl eary {
| ocal (*soneary) = @;
foreach $elem (@oneary) {
$el em *= 2;
}
}

doubl eary(*f 00);
doubl eary(*bar);

Note that scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly to$_[0] , and so on. Y ou can modify all the elements of an array by
passing all the elements as scalars, but you have to use the * mechanism (or the equivalent reference
mechanism described below) to push, pop, or change the size of an array. It will certainly be faster to pass
the typeglob (or reference) than to push a bunch of scalars onto the argument stack only to pop them all back
off again.

Evenif you don't want to modify an array, this mechanism is useful for passing multiple arraysin asingle
LI ST, since normally the LI ST mechanism will flatten all the list values so that you can't extract out the
individual arrays.

2.7.2 Passing References

If you want to pass more than one array or hash into or out of afunction and have them maintain their
integrity, then you're going to want to use an explicit pass-by-reference. Before you do that, you need to
understand references as detailed in Chapter 4. This section may not make much sense to you otherwise. But

hey, you can always ook at the pictures.

Here are afew simple examples. First, let's passin severa arraysto afunction and have it pop each of them,
returning anew list of all their former last elements:

@ailings = popmany (\@, \@®, \@, \@);

sub popnmany ({
ny $aref;

n @etlist = ();
foreach $aref (@) {

push @etlist, pop @aref;
}

return @etlist;

}

Here's how you might write afunction that returns alist of keys occurring in all the hashes passed to it:
@omon = inter(\% oo, \%ar, \%oe);
sub inter {
ny ($k, $href, %een); # locals
foreach $href (@) {
while (($k) = each %href) {
$seen{ $k} ++;
}
}

return grep { $seen{$_} == @ } keys Useen;
}

So far, we'rejust using the normal list return mechanism. What happensif you want to pass or return a hash?
WEell, if you're only using one of them, or you don't mind them concatenating, then the normal calling
convention is OK, athough alittle expensive.

Where people get into troubleis here:

(@&, @) = func(@, @);

or here:
(%a, %) = func(%, %);

That syntax simply won't work. It just sets @ or %a and clears @ or %b. Plus the function doesn't get two
separate arrays or hashes as arguments: it getsonelong list in @ , as always.

If you can arrange for the function to receive references as its parameters and return them asits return
results, it's cleaner code, although not so nice to look at. Here's a function that takes two array references as
arguments, returning the two array references ordered according to how many elements they have in them:

($aref, $bref) = func(\@, \@);
print "@baref has nore than @bref\n";
sub func {
ny ($cref, $dref) = @;
if (@bcref > @dref) {
return ($cref, S$dref);
} else {
return ($dref, $cref);
}

}

It turns out that you can actually mix the typeglob approach with the reference approach, like this:
(*a, *b) = func(\@, \@);
print "@ has nore than @\n";
sub func {

| ocal (*c, *d) = @;

if (@ > @) {

return (\@, \@);
} else {

return (\@, \@);
}

}

Here we're using the typeglobs to do symbol table aliasing. It's atad subtle, though, and also won't work if
you're using my variables, since only globals (well, and locals) are in the symbol table. When you assign a
reference to atypeglob like that, only the one element from the typeglob (in this case, the array element) is
aliased, instead of all the ssimilarly named elements, since the reference knows what it's referring to.

If you're passing around filehandles, you can usually just use the bare typeglob, like * STDOUT, but
references to typeglobs work even better because they still behave properly under use strict 'refs'.
For example:

splutter (*STDOUT) ;
sub splutter {
ny $fh = shift;
print $fh "her umwell a hmm n";

$rec = get _rec(*STDIN);
sub get _rec {
ny $fh = shift;
return scal ar <$f h>;

}

If you're planning on generating new filehandles, see the open entry in Chapter 3 for an example using the
FileHandle module.

2.7.3 Prototypes

As of the 5.003 release of Perl, you can declare your subroutines to take arguments just like many of the
built-ins, that is, with certain constraints on the number and types of arguments. For instance, if you declare:

sub nypush (\ @@

then my push takes arguments exactly like push does. The declaration of the function to be called must be
visible at compile time. The prototype only affects the interpretation of new-style calls to the function, where
new-style is defined as "not using the & character”. In other words, if you call it like a built-in function, then
it behaves like a built-in function. If you call it like an old-fashioned subroutine, then it behaves like an
old-fashioned subroutine. It naturally falls out from this rule that prototypes have no influence on subroutine
references like\ &f 00 or on indirect subroutine callslike & $subr ef } .

Method calls are not influenced by prototypes either. Thisis because the function to be called is
indeterminate at compile-time, depending as it does on inheritance, which is dynamically determined in Perl.

Sincethe intent is primarily to let you define subroutines that work like built-in commands, here are the
prototypes for some other functions that parse almost exactly like the corresponding built-ins. (Note that the
"my" on the front of eachisjust part of the name we picked, and has nothing to do with Perl my operator.

Y ou can name your prototyped functions anything you like - we just picked our names to parallel the built-in
functions.)

Declared as Called as

sub nmylink ($9%) nylink $old, $new

sub nyvec ($$9) myvec var, Soffset, 1

sub nyi ndex ($%;9%) nmyi ndex &getstring, "substr"

sub nysyswite ($%$3$;3) [nysyswite $buf, 0, |ength($buf) - $off, $Poff
sub nyreverse (@ nyreverse $a, $b, $c

sub nyjoin ($Q@ nyjoin ":", $a, $b, $c

sub nypop (\@ nypop @array

sub nysplice (\ @%@ nysplice @urray, @rray, 0, @ushne
sub nykeys (\% nykeys 9% $hashref}

sub nyopen (*; %) nyopen HANDLE, $nane

sub nypi pe (**) nypi pe READHANDLE, WRI TEHANDLE
sub nygrep (&@ nygrep { /fool/ } $a, $b, $c

sub nyrand (9$) nmyrand 42

sub nmytinme () nytime

Any backslashed prototype character (shown between parentheses in the left column above) represents an
actual argument (exemplified in the right column) that absolutely must start with that character. Just as the
first argument to keys must start with % so too must the first argument to nykeys.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all the rest of
the actual arguments, and forces list context. (It'sequivalent to LI ST in a syntax diagram.) An argument
represented by $ forces scalar context on it. An & requires an anonymous subroutine (which, if passed asthe
first argument, does not require the "sub" keyword or a subsequent comma). And a* does whatever it has
to do to turn the argument into areference to a symbol table entry. It's typically used for filehandles.

A semicolon separates mandatory arguments from optional arguments. (It would be redundant before @or %
since lists can be null.)

Note how the last three examples above are treated specially by the parser. mygr ep isparsed asatrue list
operator, myr and is parsed as atrue unary operator with unary precedence the same asrand, and nyti ne

Istruly argumentless, just like time.

That is, if you say:

nytime +2;

you'll getnytinme() + 2,notnytinme(2),whichishow it would be parsed without the prototype, or
with aunary prototype.

The interesting thing about & is that you can generate new syntax with it:

sub try (&) {

ny($try, $catch) = @;
eval { &$try };

if (3@
|l ocal $_ = $@
&S$cat ch;
}
}
sub catch (& { shift }
try {
di e "phooey";
} catch {

/ phooey/ and print "unphooey\n";
b

Thisprints"unphooey". What happensisthat t r y is called with two arguments, the anonymous function
{di e "phooey";} andthereturnvalue of thecat ch function, which in this case is nothing but its own

argument, the entire block of yet another anonymous function. Withint r y, the first function argument is
called while protected within an eval block to trap anything that blows up. If something does blow up, the

second function is called with alocal version of the global $_ variable set to the raised exception.[47] If this
all sounds like pure gobbledygook, you'll have to read about die and eval in Chapter 3, and then go check out
anonymous functions in Chapter 4.

[47] Yes, there are still unresolved issues having to do with the visibility of @ . We're ignoring
that question for the moment. (But note that if we make @ lexically scoped someday, those
anonymous subroutines can act like closures. (Geg, is this sounding alittle Lispish?
(Nevermind.)))

And here's areimplementation of the grep operator (the built-in one is more efficient, of course):

sub nygrep (&@Q {
ny $coderef = shift;
ny @esult;
foreach $_ (@) {
push(@esult, $_) if &$coderef;
}

@esul t;
}

Some folks would prefer to see full alphanumeric prototypes. Alphanumerics have been intentionally left out
of prototypes for the express purpose of someday adding named, formal parameters. (Maybe.) The current
mechanism's main goal isto let module writers provide better diagnostics for module users. Larry feels that
the notation is quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of
the module, nor make it harder to read. The line noise is visually encapsulated into a small pill that's easy to
swallow.

One note of caution. It's probably best to put prototypes on new functions, not retrofit prototypes onto older
ones. That's because you must be especially careful about silently imposing a different context. Suppose, for
example, you decide that a function should take just one parameter, like this:

sub func (%) {
ny $n = shift;
print "you gave me $n\n";

}
and someone has been calling it with an array or expression returning a single-element list:
func(@ oo0);

func(split /:/);

Then you've just supplied an implicit scalar in front of their argument, which can be more than a bit

surprising. The old @ oo that used to hold one thing doesn't get passed in. Instead, 1 (the number of
elementsin @ o00) isnow passed to f unc. And the split gets called in ascalar context and starts scribbling

onyour @ _parameter list.

But if you're careful, you can do alot of neat things with prototypes. Thisisal very powerful, of course, and
should only be used in moderation to make the world a better place.

Previous: 2.6 Statements and Programming Next: 2.8

Declarations Perl Formats
2.6 Statements and Book 2.8 Formats
Declarations Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming
| Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.7 Chapter 2 [Next: 2.9 Special Variables]
Subroutines The Gory Details
2.8 Formats

Perl has a mechanism to help you generate simple, formatted reports and charts. It can keep track of
things like how many lines on a page, what page you're on, when to print page headers, and so on.
Keywords are borrowed from FORTRAN: for mat to declare and write to execute; see the relevant
entries in Chapter 3. Fortunately, the layout is much more legible, more like the PRI NT USI NG
statement of BASIC. Think of it as a poor man's nroff(1). (If you know nroff, that may not sound like a
recommendation.)

Formats, like packages and subroutines, are declared rather than executed, so they may occur at any point
in your program. (Usually it's best to keep them all together.) They have their own namespace apart from
all the other typesin Perl. This meansthat if you have afunction named "Foo", it is not the same thing
asaformat named "Foo". However, the default name for the format associated with agiven filehandleis
the same as the name of the filehandle. Thus, the default format for STDOUT is named "STDOUT", and
the default format for filehandle TEMP is named "TEMP". They just ook the same. They really aren't.

Output record formats are declared as follows:

fornmat NAME =
FORM.I ST

If NAME is omitted, format STDOUT is defined. FORMLI ST consists of a sequence of lines, each of
which may be of one of three types:

« A comment, indicated by putting a# in the first column.
« A "picture" line giving the format for one output line.
« Anargument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they ook, except for certain fields that substitute values into the
line.[48] Each substitution field in a picture line starts with either @(at) or * (caret). These lines do not
undergo any kind of variable interpolation. The @field (not to be confused with the array marker @ is
the normal kind of field; the other kind, the * field, is used to do rudimentary multiline text-block filling.
The length of the field isindicated by padding out the field with multiple <, >, or | characters to specify,
respectively, left justification, right justification, or centering. If the variable would exceed the width
specified, it istruncated.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

[48] Even those fields maintain the integrity of the columns you put them in, however.
There is nothing in a picture line that can cause fields to grow or shrink or shift back and
forth. The columns you see are sacred in aWY SIWY G sense.

As an dternate form of right justification, you may also use # characters (after an initial @or ”, and with
an optional ".") to specify a numeric field. Thisway you can line up the decimal points. If any value

supplied for these fields contains a newline, only the text up to the newlineis printed. Finally, the special
field @ can be used for printing multi-line, non-truncated values; it should generally appear on a picture

line by itself.

The values are specified on the following line in the same order as the picture fields. The expressions
providing the values should be separated by commas. The expressions are all evaluated in alist context
before the line is processed, so asingle list expression could produce multiple list elements. The
expressions may be spread out to more than one line if enclosed in braces. If so, the opening brace must
be the first token on the first line.

Picture fields that begin with * rather than @are treated specially. With a# field, the field is blanked out
iIf the value is undefined. For other field types, the caret enables a kind of fill mode. Instead of an
arbitrary expression, the value supplied must be a scalar variable name that contains a text string. Perl
puts as much text asit can into the field, and then chops off the front of the string so that the next time
the variable is referenced, more of the text can be printed. (Y es, this means that the variable itself is
altered during execution of the write call, and is not preserved. Use a scratch variable if you want to

preserve the original value.) Normally you would use a sequence of fieldsin avertical stack to print out a
block of text. Y ou might wish to end the final field with thetext ”. . . ", which will appear in the output

If the text was too long to appear in its entirety. Y ou can change which characters are legal to "break" on
(or after) by changing the variable $: (that's SFORMAT LI NE_ BREAK CHARACTERS if you're using
the English module) to alist of the desired characters.

Using fields can produce variable-length records. If the text to be formatted is short, just repeat the
format line with the ™ field in it afew times. If you just do this for short data you'd end up getting afew
blank lines. To suppress lines that would end up blank, put a~ (tilde) character anywhere in the line.
(Thetildeitself will be transated to a space upon output.) If you put a second tilde contiguous to the
first, the line will be repeated until all the text in the fields on that line have been printed. (This works
because the " fields chew up the strings they print. But if you use afield of the @variety in conjunction
with two tildes, the expression you supply had better not give the same value every time forever! Usea
shift, or some other operator with a side effect that exhausts the set of values.)

Top-of-form processing is by default handled by aformat with the same name as the current filehandle
with"_TOP" concatenated to it. It's triggered at the top of each page. See write in Chapter 3.

Examples:

a report on the /etc/passwd file
format STDOUT _TOP =
Passwd Fil e
Nane Logi n O fice ud G d Hone

format STDOUT =
@E<<<<KLL L @ |]| @x<<<<@>>> @>>> @& <<<<LKLKKLKLKLKLKLKL LKL

$nane, $l ogin, $office,$uid, $gid, $hone

a report froma bug report form
format STDOUT _TOP =
Bug Reports
@X<<<ILKLKLILKLILKILKLILKILKLILLKLLLLLKL Q| | @>>>>>>>S>5>S>S>S>SS>S>S>>>

$syst em $% $dat e

format STDOUT =
Subj ect: @X<<<<KKLLLKLKLLLKLLKL

$subj ect

| ndex: @g<<<<L<<<<<<<<<<<<<<<<<<<<<< N <LLLLLLLILLLLLLLLLLLLLLLLLLLL
$i ndex, $descri ption

Priority: @k<<<<<<<<< Date: @<<<<K<K< ML
$priority, $dat e, $descri ption

From @X<<<<<<<<<<<<<<<<L<LLLLLLLLL ML
$from $descri ption

Assi gned to: @X<<K<KKKKLKLKLKLKLKLKLKLKLKLKLKLKLKLKLS ML
$pr ogr anmmer , $descri ption

~ N LKL L L L LKL L L LKL LKL LKL
$descri ption

~ N LKL L L L L LKL L L LKL LKL KL
$description

~ N <<LLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ N LKL L L L L LKL L L LKL L LKL <L
$descri ption

~ N LL<L,
$description

It is possible to intermix prints with writes on the same output channel, but you'll have to handle the $-
specia variable (SFORMAT _LI NES_LEFT if you're using the English module€) yourself.

2.8.1 Format Variables

The current format name is stored in the variable $~ ($FORMAT_NAME), and the current top-of-form
format nameisin $ ($FORVAT _TOP_NAME). The current output page number is stored in $%
($FORVAT_PAGE_NUMBER), and the number of lines on the pageisin $=

($FORVAT _LI NES_PER PAGE). Whether to autoflush output on this handleis stored in $|

($QUTPUT _AUTOFLUSH). The string to be output before each top of page (except the first) is stored in
$ L (SFORVAT _FORMFEED). These variables are set on a per-filehandle basis, so you'll need to select

the filehandle associated with aformat in order to affect its format variables.
sel ect ((sel ect (QUTF),

$~ = "My_OQt her _Format ",
$" = "My_Top_For mat "
)[0]);

Pretty ugly, eh? It's acommon idiom though, so don't be too surprised when you seeit. You can at least
use atemporary variable to hold the previous filehandle (this is a much better approach in general,
because not only does legibility improve, but you now have an intermediary statement in the code to stop
on when you're single-stepping the debugger):

$of h = sel ect (QUTF);

$~ = "MW_QO her _Format";

$" = "Wy_Top_ Format";

sel ect ($of h) ;

If you use the English module, you can even read the variable names:
use Engli sh;

$of h = sel ect (QUTF) ;

$SFORVAT _NANME = "My_Oher Format";

$FORVMAT _TOP_NAME = "My_Top_For mat " ;

sel ect ($of h) ;

But you still have those funny calls to select. So just use the FileHandle module. Now you can access
these special variables using lowercase method names instead:

use Fil eHandl e;
QUTF->format _name("My_Ot her _Format");
QUTF->f ormat _top_nanme("My_Top_ Format");

Much better!

Since the values line following your picture line may contain arbitrary expressions (for @fields, not *
fields), you can farm out more sophisticated processing to other functions, like sprintf or one of your

own. For example, to insert commas into a number:

format |dent =
Or<<<<KLLLLL LKL

comm fy($n)

Togetarea @~, or ™ into thefield, do this:

format |dent =
| have an @ here.

"@

To center awhole line of text, do something like this:
format |dent =

@ T EEErr e r e e e e e

111
"Sonme text

|
ne

The > field-length indicator ensures that the text will be right-justified within the field, but the field asa
whol e occurs exactly where you show it occurring. There is no built-in way to say "float thisfield to the
right-hand side of the page, however wideit is." You haveto specify where it goes relative to the left
margin. The truly desperate can generate their own format on the fly, based on the current number of
columns, and then eval it:

$format = "format STDOUT = \n"
At "< X $cols . "\n"
"$entry' . "\n"
"\tA" . "<" x ($cols-8) . "~~\n"
"$entry' . "\n"
An":

print $fo.rmat i f $Debuggi ng;
eval $format;
die $@if $@

The most important line there is probably the print. What the print would print out looks something like
this:

format STDOUT =

N <LL LKL LLLLLLL LKL

$entry
N LKL L L LKL LKL LK LK K ~~

$entry

Here's alittle program that's somewhat like fmt(1):

format =
N LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKL LLLLL LKL LKL ~~
$_
$/ ="
while (<>) {
s/\s*\n\s*/ /g;
wite;
}

2.8.2 Footers

While $FORMAT _TOP_NAIVE contains the name of the current header format, there is no corresponding
mechanism to automatically do the same thing for afooter. Not knowing how big aformat is going to be
until you evaluate it is one of the major problems. It's on the TODO list.

Here's one strategy: If you have a fixed-size footer, you can get footers by checking
$FORMAT LI NES LEFT before each write and then print the footer yourself if necessary.

Here's another strategy; open a pipe to yourself, using open(MESELF, "|-") (seetheopen entry in
Chapter 3) and always writeto MESELF instead of STDOUT. Have your child process postprocess its
STDI Nto rearrange headers and footers however you like. Not very convenient, but doable.

2.8.3 Accessing Formatting Internals

For low-level access to the formatting mechanism, you may use for mline and access $" A (the
$ACCUMULATOR variable) directly. (Formats essentially compile into a sequence of callsto formline.)
For example:

$str = formine <<'END, 1,2, 3;

@<< Q|| @>>
END

print "Whw, | just stored "$"A" in the accunulator!\n";

Ortomakeanswr it e() subroutine whichisto writeas sprintf isto printf, do this:

use Carp;
sub swite {
croak "usage: swite PICTURE ARGS" unless @;
ny $format = shift;
$MA =
formine($formt, @);
return $MA;

}

$string = swite(<<"END , 1, 2, 3);
Check nme out

G<< Q|| @>>
END

print $string;

Lexical variables (declared with my) are not visible within aformat unless the format is declared within
the scope of the lexical variable.

Previous: 2.7 Programming | Next: 2.9 Special Variables|
Subroutines Perl
2.7 Subroutines Book 2.9 Specia Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.8 Chapter 2 - Next: 3.
Formats The Gory Details Functions

2.9 Special Variables

The following names have special meaning to Perl. Most of the punctuational names have reasonable
mnemonics, or analogs in one of the shells. Nevertheless, if you wish to use the long variable names, just

say:
use Engli sh;

at the top of your program. Thiswill alias al the short names to the long names in the current package.
Some of them even have medium names, generally borrowed from awk(1).

A few of these variables are considered read-only. This means that if you try to assign to this variable,
either directly, or indirectly through areference, you'll raise arun-time exception.

2.9.1 Regular Expression Special Variables

There are severa variables that are associated with regular expressions and pattern matching. Except for
$* they are dways local to the current block, so you never need to mention themin alocal. (And $* is

deprecated, so you never need to mention it at all.)
$digit
Contains the text matched by the corresponding set of parentheses in the last pattern matched, not

counting patterns matched in nested blocks that have been exited already. (Mnemonic: like
\ di gi t.) Thesevariables are all read-only.

$&

$MATCH
The string matched by the last successful pattern match, not counting any matches hidden within a
block or eval enclosed by the current block. (Mnemonic: like & in some editors.) Thisvariable is
read-only.

$

$PRENVATCH

The string preceding whatever was matched by the last successful pattern match not counting any
matches hidden within ablock or eval enclosed by the current block. (Mnemonic: ° often precedes

aquoted string.) This variable is read-only.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

$l

$POSTIVATCH

$+

The string following whatever was matched by the last successful pattern match not counting any
matches hidden within a block or eval enclosed by the current block. (Mnemonic: ' often follows

aquoted string.) Example:

$ = "abcdefghi';
/ def /;
print "$:$& $'\n"; # prints abc: def: ghi

Thisvariable isread-only.

$LAST PAREN MATCH

$*

The last bracket matched by the last search pattern. Thisisuseful if you don't know which of a set
of alternative patterns matched. For example:

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read-only.

$MULTI LI NE_MATCHI NG

Use of $* isnow deprecated, and is allowed only for maintaining backwards compatibility with
older versions of Perl. Use/m (and maybe/s) in the regular expression match instead.

Set to 1 to do multi-line matching within a string, O to tell Perl that it can assume that strings
contain asingle line for the purpose of optimizing pattern matches. Pattern matches on strings
containing multiple newlines can produce confusing results when $* is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable only influences the interpretation
of ~ and $. A literal newline can be searched for even when $* ==

2.9.2 Per-Filehandle Special Variables

These variables never need to be mentioned in alocal because they always refer to some value pertaining
to the currently selected output filehandle - each filehandle keeps its own set of values. When you select
another filehandle, the old filehandle keeps whatever values it had in effect, and the variables now reflect
the values of the new filehandle.

To go a step further and avoid select entirely, these variables that depend on the currently selected
filehandle may instead be set by calling an object method on the FileHandle object. (Summary lines
below for this contain the word HANDLE.) First you must say:

use Fil eHandl e;

after which you may use either:
met hod HANDLE EXPR

or.
HANDLE- >met hod(EXPR)

Each of the methods returns the old value of the FileHandle attribute. The methods each take an optional
EXPR, which if supplied specifies the new value for the FileHandl e attribute in question. If not supplied,
most of the methods do nothing to the current value, except for aut of | ush, which will assumeal for
you, just to be different.

3
$OUTPUT _AUTOFLUSH
aut of | ush HANDLE EXPR

If set to nonzero, forces an fflush(3) after every write or print on the currently selected output
channel. (Thisis called "command buffering”. Contrary to popular belief, setting this variable does
not turn off buffering.) Default is 0, which on many systems means that STDOUT will default to
being line buffered if output is to the terminal, and block buffered otherwise. Setting this variable
is useful primarily when you are outputting to a pipe, such as when you are running a Per| script
under rsh and want to see the output as it's happening. This has no effect on input buffering. If you

have a need to flush a buffer immediately after setting $|, you may simply print ""; rather
than waiting for the next print to flush it. (Mnemonic: when you want your pipes to be piping
hot.)

$%
$FORMAT _PAGE_NUMBER
f or mat _page_nunber HANDLE EXPR

The current page number of the currently selected output channel. (Mnemonic: %is page number
in nroff.)

$=
$FORVAT LI NES PER PAGE
format _|ines_per page HANDLE EXPR

The current page length (printable lines) of the currently selected output channel. Default is 60.
(Mnemonic: = has horizonta lines.)

$-
$FORMAT _LI NES LEFT
format _|ines_|eft HANDLE EXPR

The number of lines |eft on the page of the currently selected output channel. (Mnemonic:
| i nes_on_page - lines_printed.)

$~
$FORMAT _NAME
f or mat _nanme HANDLE EXPR

The name of the current report format for the currently selected output channel. Default is name of
the filehandle. (Mnemonic: takes aturn after $".)

$A
$FORMAT _TOP_NAME
format _top_nanme HANDLE EXPR

The name of the current top-of-page format for the currently selected output channel. Default is
name of the filehandle with _ TOP appended. (Mnemonic: points to top of page.)

2.9.3 Global Special Variables

There are quite afew variables that are global in the fullest sense - they mean the same thing in every

package. If you want a private copy of one of these, you must localize it in the current block.
$

$ARG

The default input and pattern-searching space. These pairs are equivalent:

while (<>) {...} # only equivalent in whilel
while (defined($_ = <>)) {...}

/ “Subj ect : /

$ =~ /"Subject:/
tr/a-z/ A-Z/

$ =~ trla-z/ Az
chop

chop($_)

Here are the places where Perl will assume $_even if you don't useiit:

o Various unary functions, including functions like ord and int, as well as al thefile tests
(-f,-d) exceptfor - t , which defaultsto STDI N.

o Variouslist functions like print and unlink.

0 The pattern-matching operationsm / ,s/// ,andt r/// when used without an =~
operator.

0 The default iterator variable in aforeach loop if no other variable is supplied.

o Theimplicit iterator variable in the grep and map functions.

o The default place to put an input record when a <FH> operation's result is tested by itself as
the sole criterion of awhile test. Note that outside of awhiletest, thiswill not happen.

Mnemonic: underline is the underlying operand in certain operations.
$.
$1 NPUT_LI NE_NUMBER

$NR

The current input line number of the last filehandle that was read. An explicit close on the
filehandle resets the line number. Since <> never does an explicit close, line numbers increase
across ARGV files (but see examples under eof in Chapter 3). Localizing $. has the effect of also
localizing Perl's notion of the last read filehandle. (Mnemonic: many programs use"." to mean the
current line number.)

$/

$1 NPUT_RECORD_SEPARATOR

$RS
The input record separator, newline by default. It works like awk's RS variable, and, if set to the
null string, treats blank lines as delimiters. Y ou may set it to a multi-character string to match a
multi-character delimiter. Note that setting it to " \ n\ n" means something slightly different than
setting itto " ", if the file contains consecutive blank lines. Setting itto ™ " will treat two or more
consecutive blank lines as asingle blank line. Setting it to "\ n\ n" means Perl will blindly
assume that the next input character belongs to the next paragraph, even if it's athird newline.
(Mnemonic: / isused to delimit line boundaries when quoting poetry.)
undef $/;
$ = <Fh>; # whole file now here
s/\n[\t]+/ /q;

$,

$OUTPUT_FI ELD SEPARATOR

$OFS
The output field separator for the print operator. Ordinarily the print operator ssmply prints out
the comma separated fields you specify. In order to get behavior more like awk, set this variable as
you would set awk's OFS variable to specify what is printed between fields. (Mnemonic: what is
printed when thereisa™”, " in your print statement.)

$\

$OUTPUT_RECORD_SEPARATOR

$ORS
The output record separator for the print operator. Ordinarily the print operator simply prints out
the comma-separated fields you specify, with no trailing newline or record separator assumed. In
order to get behavior more like awk, set this variable as you would set awk's ORS variable to
specify what is printed at the end of the print. (Mnemonic: you set $\ instead of adding "\ n" at
the end of the print. Also, it'sjust like/ , but it's what you get "back" from Perl.)

$|l

$LI ST_SEPARATOR

Thisislike $, above except that it appliesto list values interpolated into a double-quoted string
(or similar interpreted string). Default is a space. (Mnemonic: obvious, | think.)

$;

$SUBSCRI PT_SEPARATOR
$SUBSEP

The subscript separator for multi-dimensional array emulation. If you refer to a hash element as:
$f oo{ $a, $b, $c}

it really means:
$foo{join($;, $a, $b, $c)}

But don't put:
@ oo{ $a, $b, $c} # a slice--note the @

which means:

($f oo{ $a}, $f oo{ $b}, $f oo{ $c})

Defaultis™\ 034", the same as SUBSEP in awk. Note that if your keys contain binary data there
might not be any safe value for $; . (Mnemonic: comma - the syntactic subscript separator - isa

semi-semicolon. Yeah, | know, it's pretty lame, but $, isaready taken for something more
important.)

Thisvariable is for maintaining backward compatibility, so consider using "real"
multi-dimensional arrays now.

$ML

$FORVAT _FORMFEED

format fornfeed HANDLE EXPR

What aformat outputs to perform aformfeed. Default is"\ f " .
$:
$FORMAT LI NE_ BREAK CHARACTERS
format _|ine_break characters HANDLE EXPR

The current set of characters after which a string may be broken to fill continuation fields (starting
with”) inaformat. Defaultis™ \ n-", to break on whitespace or hyphens. (Mnemonic: a colon
in poetry isapart of aline.)

$"A

$ACCUMULATOR

The current value of the write accumulator for format lines. A format contains formline
commands that put their result into $*A. After calling its format, write prints out the contents of
$" A and empties. So you never actually see the contents of $" A unless you call for mline yourself
and then look at it.

$#

$SOFMI

Use of $# is now deprecated and is allowed only for maintaining backwards compatibility with

older versions of Perl. Y ou should use printf instead. $# contains the output format for printed

numbers. This variable is a half-hearted attempt to emulate awk's OFMT variable. There are times,
however, when awk and Perl have differing notions of what isin fact numeric. Also, theinitial
value is approximately % 14g rather than % 69, so you need to set $# explicitly to get awk's
value. (Mnemonic: # isthe number sign. Better yet, just forget it.)

$?
$CHI LD_ERROR

The status returned by the last pipe close, backtick (" *) command, or system operator. Note that
thisis the status word returned by the wait(2) system call, so the exit value of the subprocessis
actually ($? >> 8).Thuson many systems, ($? & 255) giveswhichsignal, if any, the
process died from, and whether there was a core dump. (Mnemonic: similar to sh and ksh.)

$!

$0S_ERROR

$ERRNO
If used in a numeric context, yields the current value of the er r no variable (identifying the last
system call error) in the currently executing perl, with all the usual caveats. (This means that you
shouldn't depend on the value of $! to be anything in particular unless you've gotten a specific
error return indicating a system error.) If used in a string context, yields the corresponding system
error string. You can assignto $! in order to set er r no, if, for instance, you want $! to return the
string for error n, or you want to set the exit value for the die operator. (Mnemonic: What just went
bang?)

$@

$EVAL ERROR
The Perl syntax error message from the last eval command. If null, the last eval was parsed and
executed correctly (although the operations you invoked may have failed in the normal fashion).
(Mnemonic: Where was the syntax error "at"?)
Note that warning messages are not collected in this variable. Y ou can, however, set up aroutine
to process warnings by setting $SI G __ WARN__} below.

$$

$PROCESS | D

$PI D
The process number of the Perl running this script. (Mnemonic: same as shells.)

$<

$REAL _USER I D

$U D

Thereal user ID (uid) of this process. (Mnemonic: it's the uid you came from, if you're running
setuid.)

$>

$EFFECTI VE_USER | D
$EUI D

$(

The effective uid of this process. Example:
$< = $>; # set real to effective uid
($<,%$>) = ($>,%9<); # swap real and effective uid

(Mnemonic: it's the uid you went to, if you're running setuid.) Note: $< and $> can only be
swapped on machines supporting setreuid(2). And sometimes not even then.

$REAL_GROUP_| D

$A D

$)

Thereal group ID (gid) of this process. If you are on a machine that supports membershipin
multiple groups simultaneously, gives a space-separated list of groups you are in. The first number
is the one returned by getgid(1), and the subsequent ones by getgroups(2), one of which may be
the same as the first number. (Mnemonic: parentheses are used to group things. Thereal gid isthe
group you left, if you're running setgid.)

$EFFECTI VE_GROUP_| D
$EG D

$0

The effective gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, $) gives a space-separated list of groups you are in. The first number is the
one returned by getegid(2), and the subsequent ones by getgroups(2), one of which may be the
same as the first number. (Mnemonic: parentheses are used to group things. The effective gid is
the group that's right for you, if you're running setgid.)

Note: $<, $>, $(, and $) can only be set on machines that support the corresponding system set-id
routine. $(and $) can only be swapped on machines supporting setregid(2). Because Perl doesn't
currently use initgroups(2), you can't set your group vector to multiple groups.

$PROGRAM NANVE

$[

Contains the name of the file containing the Perl script being executed. Assigning to $0 attempts to
modify the argument area that the ps(1) program sees. Thisis more useful as away of indicating
the current program state than it is for hiding the program you're running. But it doesn't work on

al systems. (Mnemonic: same as sh and ksh.)

Theindex of thefirst element in an array, and of the first character in a substring. Default is 0, but
you could set it to 1 to make Perl behave more like awk (or FORTRAN) when subscripting and
when evaluating the index and substr functions. (Mnemonic: [begins subscripts.)

Assignment to $[is now treated as a compiler directive, and cannot influence the behavior of any

other file. Its use is discouraged.
$]
$PERL_VERSI ON

Returns the version + patchlevel / 1000. It can be used to determine at the beginning of a script
whether the Perl interpreter executing the script isin the right range of versions. Example:

warn "No checksummi ng!\n" if $] < 3.019;
di e "Must have prototyping available\n" if $] < 5.003;
(Mnemonic: Isthisversion of Perl in the right bracket?)
$"D
$DEBUGE NG
The current value of the debugging flags. (Mnemonic: value of -D switch.)
$"F
$SYSTEM FD_MAX

The maximum system file descriptor, ordinarily 2. System file descriptors are passed to execed
processes, while higher file descriptors are not. Also, during an open, system file descriptors are

preserved even if the open fails. (Ordinary file descriptors are closed before the open is attempted,
and stay closed if the open fails.) Note that the close-on-exec status of afile descriptor will be
decided according to the value of $"F at the time of the open, not the time of the exec.

$"H
This variable contains internal compiler hints enabled by certain pragmatic modules. Hint: ignore
this and use the pragmata.

S

$1I NPLACE EDI T

The current value of the inplace-edit extension. Use undef to disable inplace editing. (Mnemonic:
value of -i switch.)

$"0
$OSNAME

This variable contains the name of the operating system the current Perl binary was compiled for.
It's intended as a cheap alternative to pulling it out of the Config module.

$°P
$PERLDB

The internal flag that the debugger clears so that it doesn't debug itself. Y ou could conceivably
disable debugging yourself by clearing it.

T
$BASETI ME

The time at which the script began running, in seconds since the epoch (the beginning of 1970, for
UNIX systems). The valuesreturned by the- M - A, and - Cfiletests are based on this value.

$w
SWARNI NG

The current value of the warning switch, either true or false. (Mnemonic: the value is related to the
-w switch.)

$" X

$EXECUTABLE_NANVE

The name that the Perl binary itself was executed as, from C'sar gv[0] .
$ARGV

Contains the name of the current file when reading from <ARGV>.

2.9.4 Global Special Arrays

The following arrays and hashes are global. Just like the special global scalar variables, they refer to
package main no matter when they are referenced. The following two statements are exactly the same:
print "@NCQn";

print "@main::|INCQN",

GARGV

The array containing the command-line arguments intended for the script. Note that $#ARGV is
generally the number of arguments minus one, since $ARGV[0] isthe first argument, not the
command name. See $0 for the command name.

@ NC

The array containing the list of placesto look for Perl scriptsto be evaluated by thedo EXPR,
require, or use constructs. It initially consists of the arguments to any -I command-line switches,
followed by the default Perl libraries, such as:

/usr/1ocal/lib/perl5/$ARCH $VERSI ON

/usr/local/lib/perl5

lusr/local/lib/perl5/site_perl
[usr/local/lib/perl5/site_perl/$ARCH

followed by ".", to represent the current directory. If you need to modify thislist at run-time, you
should use the lib module in order to also get the machine-dependent library properly loaded:

use lib "/nypath/libdir/";
use SoneMod,

The array into which the input lines are split when the -a command-line switch is given. If the -a
option is not used, this array has no special meaning. (Thisarray is actually only @i n: : F, and
not in all packages at once.)

% NC

The hash containing entries for the filename of each file that has been included viado or require.

The key is the filename you specified, and the value is the location of the file actually found. The
requir e command uses this array to determine whether a given file has already been included.

YENV

The hash containing your current environment. Setting avalue in % ENV changes the environment
for child processes:

$SENV{ PATH} = "/bin:/usr/bin";

To remove something from your environment, make sure to use delete instead of undef.

Note that processes running as a crontab entry inherit a particularly impoverished set of
environment variables. Also note that you should set $ENV{ PATH} , $ENV{ SHELL} , and
$ENV{ | FS} if you are running as a setuid script. See Chapter 8, Other Oddments, for more on

security and setuid issues.
%8l G

The hash used to set signal handlers for various signals. Example:

sub handl er { # 1st argunent is signal nane
| ocal ($sig) = @;
print "Caught a SI G$sig--shutting down\n";
cl ose(LOG) ;
exit(0);
}

$SIGINT} = '"handl er';
$SIG QU T} = 'handler';

$SI G I NT} = ' DEFAULT' ; # restore default action
$SIGQUI T = "1 GNORE # ignore SIGQU T

The % SIG array only contains values for the signals actually set within the Perl script. Here are
some other examples:

$SI G PI PE} = Pl unber; # SCARY!!

$SI G PI PE} = "Pl unmber"; # just fine, assunes nain:: Pl unber
$SI G PI PE} = \ &Pl unber; # just fine; assune current Pl unber
$SI G Pl PE} = Pl unber(); # oops, what did Plunber() return??

The example marked SCARY! ! is problematic because it's a bareword, which means sometimes
it's a string representing the function, and sometimes it's going to call the subroutine right then and
there! Best to be sure and quote it or take areference to it. Certain internal hooks can aso be set
using the % SI G hash. The routine indicated by $SI G __ WARN __} iscalled when awarning
message is about to be printed. The warning message is passed as the first argument. The presence
of a__ WARN__ hook causes the ordinary printing of warnings to STDERR to be suppressed. Y ou

can use thisto save warningsin avariable, or turn warnings into fatal errors, like this:

local $SIG __WARN } = sub { die $ [0] };
eval $proggi e;

Theroutineindicated by $SI G{ __ DI E__} iscaled when afatal exception is about to be thrown.
The error message is passed as the first argument. Whena DI E__ hook routine returns, the
exception processing continues as it would have in the absence of the hook, unless the hook
routine itself exits viaagoto, aloop exit, or adie. The__ DI E__ handler is explicitly disabled

during the call, so that you yourself can then call thereal diefroma__DI E__ handler. (If it
weren't disabled, the handler would call itself recursively forever.) The caseissimilar for
__VWARN_ .

2.9.5 Global Special Filehandles

The following filehandles (except for DATA) alwaysrefer to mai n: . FI LEHANDLE.
ARGV

The special filehandle that iterates over command line filenamesin @ARGV. Usually written as

the null filehandlein <>.
STDERR

The special filehandle for standard error in any package.
STDI N

The special filehandle for standard input in any package.
STDOUT

The special filehandle for standard output in any package.
DATA

The special filehandle that refers to anything followingthe _ END _ token in the file containing
the script. Or, the special filehandle for anything following the _ DATA _ tokenin arequired file,

aslong as you're reading data in the same package that the DATA _ wasfound in.
_ (underline)

The special filehandle used to cache the information from the last stat, Istat, or file test operator.

Previous: 2.8 Programming Next: 3.
Formats Perl Functions
2.8 Formats Book 3. Functions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl

Previous: 3.1 Perl Functions
by Category

Chapter 3
Functions

Next: 4. References and
Nested Data Structures

3.2 Perl Functions in Alphabetical Order

o /PATTERN/
o« 7PATTERN?

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

defined
delete

exec
exists
exit
exp
fentl
fileno

flock
fork
format
formline

getc

getgrent
getargid
getgrnam
gethostbyaddr
gethostbyname

gethostent

getlogin
getnetbyaddr

getnetbyname

getnetent
getpeername
getparp
getppid
getpriority

getprotobyname
getprotobynumber

getprotoent
getpwent
getpwnam
getpwuid
getservbyname

getservbyport

getservent
getsockname
getsockopt
glob

gmtime

goto

arep

hex

mport
index

int
joctl

2 B

3
=3

BE
S Ig

B

a/STRING/

guotemeta
rand

reset
return
reverse
rewinddir
rindex

rmdir

gl

scalar

seek

seekdir

select (output filehandle)
select (ready file descriptors)
semctl

semget

sart
srand

stat
study
sub
substr

symlink

- Wwaitpid
° wantarrgy
. warn

o Write
yill

Previous: 3.1 Perl Functions Programming Next: 4. References and
by Category Perl Nested Data Structures

3.1 Perl Functions by Book 4. References and Nested
Category Index Data Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.14
3.2.12 chmod Functions chop
3.2.13 chomp
chonp VARI ABLE
chonp LI ST
chonp

Thisisaslightly safer version of chop (see below) in that it removes only any line ending corresponding
to the current value of $/, and not just any last character. Unlike chop, chomp returns the number of
characters deleted. If $/ is empty (in paragraph mode), chomp removes all trailing newlines from the
selected string (or strings, if chomping aLl ST).

Previous: Programming Next: 3.2.14
3.2.12 chmod Perl chop
3.2.12 chmod Book 3.2.14 chop
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 2.9 Special Chapter 3 Next: 3.2 Perl Functions in
Variables Alphabetical Order

3. Functions

Contents:
Perl Functions by Category

Perl Functions in Alphabetical Order

This chapter describes each of the Perl functions. They're presented one by one in alphabetical order.
(Well, actually, some related functions are presented in pairs, or even threes or fours. Thisisusualy the
case when the Perl functions simply make UNIX system callsor C library cals. In such cases, the
presentation of the Perl function matches up with the corresponding UNIX manpage organization.)

Each function description begins with a brief presentation of the syntax for that function. Parametersin
ALL_ CAPS represent placeholders for actual expressions, as described in the body of the function
description. Some parameters are optional; the text describes the default values used when the parameter
Is not included.

The functions described in this chapter can serve astermsin an expression, along with literals and
variables. (Or you can think of them as prefix operators. We call them operators half the time anyway.)
Some of these operators, er, functionstakea Ll ST as an argument. Such alist can consist of any
combination of scalar and list values, but any list values are interpolated as a sequence of scalar values,
that is, the overall argument LI ST remains asingle-dimensional list value. (To interpolate an array as a
single element, you must explicitly create and interpolate a reference to the array instead.) Elements of
the L1 ST should be separated by commas (or by =>, which isjust afunny kind of comma). Each
element of the LI ST isevaluated in alist context.

The functions described in this chapter may be used either with or without parentheses around their
arguments. (The syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but
occasionally surprising) ruleisthis: if it lookslike afunction, it is afunction, and precedence doesn't
matter. Otherwise it's alist operator or unary operator, and precedence does matter. And whitespace
between the function and its left parenthesis doesn't count - so you need to be careful sometimes:

print 1+2+3; # Prints 6.
print(1+2) + 3; # Prints 3.
print (1+2)+3; # Also prints 3!
print +(1+2)+3; # Prints 6.

print ((1+2)+3); # Prints 6.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

If you run Perl with the -w switch it can warn you about this. For example, the third line above produces:

print (...) interpreted as function at - |line 3.
Usel ess use of integer addition in void context at - |ine 3.

Some of the LI ST operators impose special semantic significance on the first element or two of thelist.
For example, the chmod function requires that the first element of the list be the new permission to apply

to the fileslisted in the remaining elements. Syntactically, however, the argument to chmod isreally just
aLl ST, and you could say:

unshift @rray, 0644;
chnmod @rray;

which is the same as:
chnod 0644, @rray;

In these cases, the syntax summary at the top of the section mentions only the bare L1 ST, and any
special initia arguments are documented in the description.

On the other hand, if the syntax summary lists any arguments beforethe LI ST, those arguments are
syntactically distinguished (not just semantically distinguished), and may impose syntactic constraints on
the actual arguments you pass to the function when you call it. For instance, the first argument to the
push function must be an array name. (Y ou may also put such syntactic constraints on your own

subroutine declarations by the use of prototypes. See "Prototypes' in Chapter 2, The Gory Details.)

Many of these operations are based directly on the C library's functions. If so, we do not attempt to
duplicate the UNIX system documentation for that function, but refer you directly to the manual page.
Such references |ook like this: " See getlogin(3)." The number in parentheses tells you which section of
the UNIX manual normally contains the given entry. If you can't find a manual page (manpage for short)
for aparticular C function on your system, it's likely that the corresponding Perl functionis
unimplemented. For example, not all systems implement socket(2) calls. If you're running in the
MS-DOS world, you may have socket calls, but you won't have fork(2). (Y ou probably won't have
manpages either, come to think of it.)

Occasionally you'll find that the documented C function has more arguments than the corresponding Perl
function. The missing arguments are amost always things that Perl already knows, such as the length of
the previous argument, so you needn't supply them in Perl. Any remaining disparities are due to different
ways Perl and C specify their filehandles and their success/failure values.

For functions that can be used in either scalar or list context, non-abortive failure is generally indicated in
ascalar context by returning the undefined value, and in alist context by returning the null list.
Successful execution is generally indicated by returning a value that will evaluate to true (in context).

Remember the following rule: there is no general rule for converting a list into a scalar!

Many operators can return alist in list context. Each such operator knows whether it is being called in
scalar or list context, and in scalar context returns whichever sort of value it would be most appropriate
to return. Some operators return the length of the list that would have been returned in list context. Some
operators return the first value in the list. Some operators return the last value in the list. Some operators
return the "other" value, when something can be looked up either by number or by name. Some operators

return a count of successful operations. In general, Perl operators do exactly what you want, unless you
want consistency.

3.1 Perl Functions by Category

Here are Perl's functions and function-like keywords, arranged by category. Some functions appear under
more than one heading.

Scalar manipulation

chomp, chop, chr, crypt, hex, index, Ic, Icfirst, length, oct, ord, pack, g//, qq//, reverse, rindex,
sprintf, substr, tr///, uc, ucfirst, y///

Regular expressions and pattern matching

m//, pos, quotemeta, g///, split, study

Numeric functions

abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Array processing

pop, push, shift, splice, unshift

List processing

grep, join, map, qw//, reverse, sort, unpack

Hash processing

delete, each, exists, keys, values

Input and output

binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format, getc, print,
printf, read, readdir, rewinddir, seek, seekdir, select (ready file descriptors), syscall, sysread,
syswrite, tell, telldir, truncate, warn, write

Fixed-length data and records

pack, read, syscall, sysread, syswrite, unpack, vec

Filehandles, files, and directories

chdir, chmod, chown, chroot, fentl, glob, ioctl, link, Istat, mkdir, open, opendir, readlink,
rename, rmdir, select (ready file descriptors), select (output filehandle), stat, symlink,
sysopen, umask, unlink, utime

Flow of program control

caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray

Scoping

caller, import, local, my, package, use

Miscellaneous

defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Processes and process groups

alarm, exec, fork, getpgrp, getppid, getpriority, Kill, pipe, gx//, setpgrp, setpriority, sleep,
system, times, wait, waitpid

Library modules

do, import, no, package, require, use

Classes and objects

bless, domclose, domopen, package, ref, tie, tied, untie, use

Low-level socket access

accept, bind, connect, getpeer name, getsockname, getsockopt, listen, recv, send, setsockopt,
shutdown, socket, socketpair

System V interprocess communication

msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group information

endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network information

endprotoent, endser vent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr,
getnetbyname, getnetent, getpr otobyname, getprotobynumber, getprotoent, getser voyname,
getservbyport, getser vent, sethostent, setnetent, setprotoent, setser vent

Time

gmtime, localtime, time, times

Previous: 2.9 Special Programming Next: 3.2 Perl Functions in
Variables Perl Alphabetical Order

2.9 Special Variables Book 3.2 Perl Functionsin

Index Alphabetical Order

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 3.2 Perl Functions Chapter 3 t.er 3 Next: 3.2.2
in Alphabetical Order Functions 2PATTERN?

3.2.1 /PATTERN/

| PATTERN
m PATTERN

The match operator. See "Regular Expressions' in Chapter 2.

Previous: 3.2 Perl Functions Programming Next: 3.2.2
in Alphabetical Order Perl ?PATTERN?
3.2 Perl Functionsin Book 3.2.2 ?PATTERN?
Alphabetical Order Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

[Previous: 3.2.1 /PATTERN/] Chapter 3 Next: 3.2.3
Functions abs

3.2.2 ?7PATTERN?

?PATTERN?

Thisisjust likethe/ PATTERN search, except that it matches only once between callsto reset, so it

finds only the first occurrence of something rather than all occurrences. (In other words, the operator
works repeatedly until it actually matches something, then it turnsitself off until you explicitly turn it
back on with reset.) This may be useful (and efficient) if you want to see only the first occurrence of the

pattern in each file of aset of files. Note that n?? isequivaent to ??.

The reset operator will only reset instances of ?? that were compiled in the same package that it was.

| Previous: 3.2.1 /PATTERN/| Programming Next: 3.2.3
Perl abs

3.2.1/PATTERN/ Book 3.2.3abs
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

[Previous: 3.2.2 ?PATTERN?| Chapter 3 Next: 3.2.4
Functions accept

3.2.3 abs

abs VALUE

This function returns the absolute value of its argument (or $_if omitted).

[Previous: 3.2.2 ?PATTERN?| Programming Next: 3.2.4
Perl accept

3.2.2 PATTERN? Book 3.2.4 accept
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_MIM Next: 3.2.5
3.2.3 abs Functions alarm
3.2.4 accept

accept NEWSOCKET, GENERI CSOCKET

This function does the same thing as the accept system call - see accept(2). It is used by server processes

that wish to accept socket connections from clients. Execution is suspended until a connection is made, at
which time the NEWSOCKET filehandle is opened and attached to the newly made connection. The
function returns the connected address if the call succeeded, false otherwise (and puts the error code into
$'). GENERI CSOCKET must be afilehandle already opened viathe socket operator and bound to one of

the server's network addresses. For example:

unl ess ($peer = accept NS, S) {
die "Can't accept a connection: $'\n";

}
See also the example in the section " Sockets' in Chapter 6, Social Engineering.
Previous: Programming Next: 3.2.5
3.2.3 abs Perl alarm
3.2.3 abs Book 3.25aam
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_MIM Next: 3.2.6
3.2.4 accept Functions atan2
3.2.5 alarm
al ar m EXPR

Thisfunction sends a SI GALRMsignal to the executing Perl program after EXPR seconds. On some
older systems, alarms go off at the "top of the second,” so, for instance, an al ar m 1 may go off
anywhere between 0 to 1 second from now, depending on when in the current second itis. Anal arm 2
may go off anywhere from 1 to 2 seconds from now. And so on. For better resolution, you may be able to
use syscall to call the itimer routines that some UNIX systems support. Or you can use the timeout

feature of the select function.

Each call disables the previous timer, and an argument of 0 may be supplied to cancel the previous timer
without starting a new one. The return value is the number of seconds remaining on the previous timer.

Previous: Programming Next: 3.2.6
3.2.4 accept Perl atan2
3.2.4 accept Book 3.2.6 atan2
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.7
3.2.5 alarm Functions bind
3.2.6 atan?2
atan2 Y, X

This function returns the arctangent of Y/ X in the range [Ie] to . A quick way to get an
approximate value of ISto say:
$pi = atan2(1,1) * 4;

For the tangent operation, you may use the POSI X: : t an() function, or use the familiar relation:
sub tan { sin($ [0]) / cos($ [0]) }

Previous: Programming Next: 3.2.7
3.2.5 alarm Perl bind
3.2.5aarm Book 3.2.7 bind
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_m‘m_ie’ Next: 3.2.8
3.2.6 atan2 Functions binmode
3.2.7 bind

bi nd SOCKET, NANME

This function does the same thing as the bind system call - see bind(2). It attaches an address (a name) to

an already opened socket specified by the SOCKET filehandle. The function returns true if it succeeded,
false otherwise (and puts the error code into $!). NAME should be a packed address of the proper type for
the socket.

bind S, $sockaddr or die "Can't bind address: $!'\n";
See also the exampl e in the section " Sockets" in Chapter 6.

Previous: Programming Next: 3.2.8
3.2.6 atan2 Perl binmode
3.2.6 atan?2 Book 3.2.8 binmode
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_MIM Next: 3.2.9
3.2.7 bind Functions bless
3.2.8 binmode

bi nnode FI LEHANDLE

This function arranges for the file to be treated in binary mode on operating systems that distinguish
between binary and text files. It should be called after the open but before any 1/0O is done on the
filehandle. The only way to reset binary mode on afilehandle is to reopen the file.

On systems that distinguish binary mode from text mode, files that are read in text mode have\ r\ n
sequences trandated to\ n oninput and \ n trandated to \ r \ n on output. binmode has no effect under
UNIX or Plan9. If FI LEHANDLE is an expression, the value is taken as the name of the filehandle. The
following example shows how a Perl script might prepare to read a word processor file with embedded
control codes:

open WP, "$file.wp" or die "Can't open $file.wp: $'\n";

bi nnode WP;

while (read WP, $buf, 1024) {...}

Previous: Programming Next: 3.2.9
3.2.7 bind Perl bless
3.2.7 bind Book 3.2.9 bless
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: 3.2.8 Chapter 3 Next: 3.2.10
binmode Functions caller

3.2.9 bless

bl ess REF, CLASSNANME

bl ess REF

This function looks up the item pointed to by reference REF and tells the item that it is now an object in
the CLASSNAIVE package - or the current package if no CLASSNAME is specified, which is often the
case. It returns the reference for convenience, since a blessis often the last thing in a constructor
function. (Always use the two-argument version if the constructor doing the blessing might be inherited
by aderived class. In such cases, the class you want to bless your object into will normally be found as
the first argument to the constructor in question.) See "Objects" in Chapter 5, Packages, Modules, and
Object Classes for more about the blessing (and blessings) of objects.

Previous: 3.2.8 Programming Next: 3.2.10
binmode Perl caller
3.2.8 binmode Book 3.2.10 caller
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

ﬁ@ Programming Perl —

Previous: C_ham Next: 3.2.11
3.2.9 bless Functions chdir
3.2.10 caller
cal | er EXPR
cal |l er

This function returns information about the stack of current subroutine calls. Without an argument it returns the
package name, filename, and line number that the currently executing subroutine was called from:

($package, $filenane, $line) = caller;

With an argument it evaluates EXPR as the number of stack framesto go back before the current one. It also reports
some additional information.

$i = 0;

while (($pack, $file, $line, $subname, $hasargs, $wantarray) = caller($i++)) {

}

Furthermore, when called from within the DB package, caller returns more detailed information: it sets the list
variable @B: : ar gs to be the arguments passed in the given stack frame.

Previous: Programming Next: 3.2.11
3.2.9 bless Perl chdir
3.2.9 bless Book 3.2.11 chdir
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.12
3.2.10 caller Functions chmod
3.2.11 chdir
chdir EXPR

This function changes the working directory to EXPR, if possible. If EXPR is omitted, it changesto the
home directory. The function returns 1 upon success, 0 otherwise (and puts the error code into $!).

chdir "$prefix/lib" or die "Can't cd to $prefix/lib: $!'\n";

The following code can be used to move to the user's home directory, one way or another:

$ok = chdir($ENV{"HOVE"} || $EN{"LOGI R'} || (getpwuid($<))[7]);
Alternately, taking advantage of the default, you could say this:

$ok = chdir() || chdir((getpwid($<))[7]);

See also the Cwd module, described in Chapter 7, The Standard Perl Library, which lets you keep track
of your current directory.

Previous: Programming Next: 3.2.12
3.2.10 caller Perl chmod
3.2.10 caller Book 3.2.12 chmod
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.13
3.2.11 chdir Functions chomp
3.2.12 chmod
chnod LI ST

This function changes the permissions of alist of files. The first element of the list must be the numerical
mode, as in chmod(2). (When using nonliteral mode data, you may need to convert an octal string to a
decimal number using the oct function.) The function returns the number of files successfully changed.

For example:

$cnt = chnod 0755, 'filel', '"file2';

will set $cnt to 0, 1, or 2, depending on how many files got changed (in the sense that the operation
succeeded, not in the sense that the bits were different afterward). Here's a more typical usage:
chnod 0755, @xecut abl es;

If you need to know which files didn't allow the change, use something like this:

@annot = grep {not chnod 0755, $ } 'filel', 'file2', '"file3d;
die "$0: could not chnod @annot\n" if @annot;

Thisidiom makes use of the grep function to select only those elements of the list for which the chmod
function failed.

Previous: Programming Next: 3.2.13
3.2.11 chdir Perl chomp
3.2.11 chdir Book 3.2.13 chomp
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.15
3.2.13 chomp Functions chown
3.2.14 chop
chop VARI ABLE
chop LI ST
chop

This function chops off the last character of a string and returns the character chopped. The chop

operator is used primarily to remove the newline from the end of an input record, but is more efficient
thans/\ n$/ /. 1f VARI ABLE isomitted, the function chopsthe $_variable. For example:

whi | e (<PASSWD>) {
chop; # avoid \n on last field

@rray = split /:/;

}

If you chop aLl ST, each string in the list is chopped:

@ines = "cat nyfile ;

chop @i nes;

Y ou can actually chop anything that is an Ivalue, including an assignment:
chop($cwd = “pwd’);

chop($answer = <STDI N>);

Note that thisis different from:

$answer = chop($tnp = <STDIN>); # WRONG

which puts a newline into $answer , because chop returns the character chopped, not the remaining
string (whichisin $t np). One way to get the result intended here is with substr :
$answer = substr <STDIN>, 0, -1;

But thisis more commonly written as:
chop($answer = <STDI N>) ;

To chop more than one character, use substr as an lvalue, assigning a null string. The following removes
the last five characters of $car avan:

substr($caravan, -5) ="";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

The negative subscript causes substr to count from the end of the string instead of the beginning.

Previous: Programming Next: 3.2.15
3.2.13 chomp Perl chown
3.2.13 chomp Book 3.2.15 chown
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.16
3.2.14 chop Functions chr
3.2.15 chown
chown LI ST

This function changes the owner (and group) of alist of files. The first two elements of the list must be
the numerical uid and gid, in that order. The function returns the number of files successfully changed.
For example:

$cnt = chown $uid, $gid, 'filel', '"file2";

will set $cnt to 0, 1, or 2, depending on how many files got changed (in the sense that the operation
succeeded, not in the sense that the owner was different afterward). Here's amore typical usage:
chown $uid, $gid, @il enanes;

Here's a subroutine that looks everything up for you, and then does the chown:

sub chown_by nane ({
| ocal ($user, $pattern) = @;
chown((get pwnan($user))[2,3], gl ob($pattern));

}

&hown_by nane("fred", "*.c");

Notice that this forces the group of each file to be the gid fetched from the passwd file. An alternativeis
to pass a-1 for the gid, which leaves the group of the file unchanged.

On most systems, you are not allowed to change the ownership of the file unless you're the superuser,
although you should be able to change the group to any of your secondary groups. On insecure systems,
these restrictions may be relaxed, but thisis not a portable assumption.

Previous: Programming Next: 3.2.16
3.2.14 chop Perl chr
3.2.14 chop Book 3.2.16 chr
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.17
3.2.15 chown Functions chroot
3.2.16 chr
chr NUVBER

This function returns the character represented by that NUVBER in the character set. For example,
chr (65) is"A" in ASCII. To convert multiple characters, use pack(" C*", LI ST) instead.

Previous: Programming Next: 3.2.17
3.2.15 chown Perl chroot
3.2.15 chown Book 3.2.17 chroot
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Ch t.er 3 Next: 3.2.18
3.2.16 chr Functions close

3.2.17 chroot

chr oot FI LENAMVE

This function does the same operation as the chr oot system call - see chroot(2). If successful,

FI LENANE becomes the new root directory for the current process - the starting point for pathnames
beginning with "/ . This directory isinherited across exec calls and by all subprocesses. Thereis no way
to undo a chroot. Only the superuser can use this function. Here's some code that approximates what

many FTP servers do:
chroot +(getpwnan('ftp'))[7]
or die "Can't do anonynous ftp: $!'\n";

Previous: Programming Next: 3.2.18
3.2.16 chr Perl close
3.2.16 chr Book 3.2.18 close
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_MIM Next: 3.2.19
3.2.17 chroot Functions closedir
3.2.18 close

cl ose FI LEHANDLE

This function closes the file, socket, or pipe associated with the filehandle. Y ou don't have to close
FI LEHANDLE if you are immediately going to do another open onit, since the next open will close it

for you. (See open.) However, an explicit close on an input file resets the line counter ($.), while the
implicit close done by open does not. Also, closing a pipe will wait for the process executing on the pipe

to complete (in case you want to look at the output of the pipe afterward), and it prevents the script from
exiting before the pipelineisfinished.[1] Closing a pipe explicitly also puts the status value of the

command executing on the pipe into $?. For example:

[1] Note, however, that a dup'ed pipeis treated as an ordinary filehandle, and close will not
wait for the child on that filehandle. Y ou have to wait for the child by closing the filehandle
on which it was originally opened.

open QUTPUT, '|sort >foo0'; # pipe to sort

print stuff to output
cl ose QUTPUT, # wait for sort to finish
die "sort failed" if $7?; # check for sordid sort
open | NPUT, 'foo'; # get sort's results

FI LEHANDL E may be an expression whose value gives the real filehandle name. It may also be a
reference to afilehandle object returned by some of the newer object-oriented I/O packages.

Previous: Programming Next: 3.2.19
3.2.17 chroot Perl closedir
3.2.17 chroot Book 3.2.19 closedir
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Ch t.er 3 Next: 3.2.20
3.2.18 close Functions connect

3.2.19 closedir

cl osedi r DI RHANDLE

This function closes adirectory opened by opendir. See the examples under readdir .

Previous: Programming Next: 3.2.20
3.2.18 close Perl connect
3.2.18 close Book 3.2.20 connect
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Ch t‘er 3 Next: 3.2.21
3.2.19 closedir Functions cos

3.2.20 connect

connect SOCKET, NAME

This function does the same thing as the connect system call - see connect(2). The function initiates a

connection with another process that is waiting at an accept(2). The function returns true if it succeeded,
false otherwise (and puts the error code into $!). NAME should be a packed network address of the proper
type for the socket. For example:

connect S, %$dest add
or die "Can't connect to $hostnanme: $!'\n";

To disconnect a socket, either close or shutdown. See aso the example in the section " Sockets' in
Chapter 6.

Previous: Programming Next: 3.2.21
3.2.19 closedir Perl cos
3.2.19 closedir Book 3.2.21 cos
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: C_m‘m_ie’ Next: 3.2.22
3.2.20 connect Functions crypt
3.2.21 cos
cos EXPR

This function returns the cosine of EXPR (expressed in radians). For example, the following script will
print a cosine table of angles measured in degrees.

Here's the lazy way of getting degrees-to-radians.

$pi = atan2(1,1) * 4;
$pi over 180 = $pi / 180;

Print table.

for ($_ =10; $ <=090; $ ++) {
printf "93d %.5f\n", $_, cos($_ * $pi over180);
}

For the inverse cosine operation, you may use the POSI X: : acos() function, or use thisrelation:
sub acos { atan2(sqgrt(1 - $ [O0] * $[0]), $[0]) }

Previous: Programming Next: 3.2.22
3.2.20 connect Perl crypt
3.2.20 connect Book 3.2.22 crypt
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.23
3.2.21 cos Functions dbmclose
3.2.22 crypt

crypt PLAINTEXT, SALT

This function encrypts a string exactly in the manner of crypt(3). Thisis useful for checking the
password file for lousy passwords.[2] Only the guys wearing white hats are allowed to do this.

[2] What you really want to do is prevent people from adding the bad passwords in the first
place.

To see whether atyped-in password $guess matches the password $pass obtained from afile (such as
/etc/passwd), try something like the following:

i f (crypt($guess, $pass) eq $pass) {
guess i s correct
}

Note that there is no easy way to decrypt an encrypted password apart from guessing. Also, truncating
the salt to two charactersis awaste of CPU time, although the manpage for crypt(3) would have you
believe otherwise.

Here's an example that makes sure that whoever runs this program knows their own password:

$pwd = (getpwiid ($<))[1];
$salt = substr $pwd, 0, 2;

system "stty -echo”;
print "Password: ";
chop($word = <STDI N>);
print "\n";
system"stty echo";

i f (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

} else {
print "ok\n";

}

Of course, typing in your own password to whoever asksfor it is unwise.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

The crypt function is unsuitable for encrypting large quantities of data. Find alibrary module for PGP
(or something like that) for something like that.

Previous: Programming Next: 3.2.23
3.2.21 cos Perl dbmclose
3.2.21 cos Book 3.2.23 dbmclose
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Ch ter 3 Next: 3.2.24
3.2.22 crypt Functions dbmopen

3.2.23 dbmclose

dbntl ose HASH
This function breaks the binding between a DBM file and a hash.

Thisfunction is actually just acall to untie with the proper arguments, but is provided for backward
compatibility with older versions of Perl.

Previous: Programming Next: 3.2.24
3.2.22 crypt Perl dbmopen
3.2.22 crypt Book 3.2.24 dbmopen
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

[Previous: 3.2.23 dbmclose] Chapter 3 Next: 3.2.25
Functions defined

3.2.24 dbmopen

dbnopen HASH, DBNAME, MODE

Thisbindsa DBM fileto ahash (that is, an associative array). (DBM stands for Data Base Management,
and consists of aset of C library routines that allow random access to records via a hashing algorithm.)
HASH is the name of the hash (with a%). DBNAIVE is the name of the database (without the . di r or

. pag extension). If the database does not exist, and a valid MODE is specified, the database is created
with the protection specified by MODE (as modified by the umask). To prevent creation of the database if
it doesn't exist, you may specify a MODE of undef, and the function will return afalse valueif it can't find

an existing database. If your system supports only the older DBM functions, you may have only one
dbmopen in your program.

Values assigned to the hash prior to the domopen are not accessible.

If you don't have write access to the DBM file, you can only read the hash variables, not set them. If you
want to test whether you can write, either use file tests or try setting a dummy array entry inside an eval,

which will trap the error.

Note that functions such as keys and values may return huge list values when used on large DBM files.
Y ou may prefer to use the each function to iterate over large DBM files. This example prints out the mail
aliases on a system using sendmail:

dbnopen %ALI ASES, "/etc/aliases"”, 0666
or die "Can't open aliases: $!'\n";

whil e (($key, $val) = each %ALI ASES) ({

print $key, ' ="', $val, "\n";
}
dbntl ose %ALI ASES;
Hashes bound to DBM files have the same limitations as DBM files, in particular the restrictions on how
much you can put into a bucket. If you stick to short keys and values, it's rarely a problem. Another thing
you should bear in mind is that many existing DBM databases contain null-terminated keys and values

because they were set up with C programs in mind. The B News history file and the old sendmail aliases
file are examples. Just use " $key\ 0" instead of $key.

Thereis currently no built-in way to lock generic DBM files. Some would consider thisabug. The

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

DB_File module does provide locking at the granularity of the entire file, however. See the
documentation on that module in Chapter 7 for details.

Thisfunction is actually just acall to tie with the proper arguments, but is provided for backward
compatibility with older versions of Perl.

| Previous: 3.2.23 dbmclose| Programming Next: 3.2.25
Perl defined

3.2.23 domclose Book 3.2.25 defined
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

[Previous: 3.2.24 dbmopen| Chapter 3 Next: 3.2.26
Functions delete

3.2.25 defined

defi ned EXPR

This function returns a Boolean value saying whether EXPR has areal value or not. A scalar that contains
no valid string, numeric, or reference value is known as the undefined value, or undef for short. Many
operations return the undefined value under exceptional conditions, such as end of file, uninitialized
variable, system error, and such. This function allows you to distinguish between an undefined null string
and a defined null string when you're using operators that might return areal null string.

Y ou may also check to see whether arrays, hashes, or subroutines have been allocated any memory yet.
Arrays and hashes are allocated when you first put something into them, whereas subroutines are
allocated when a definition has been successfully parsed. Using defined on the predefined special

variablesis not guaranteed to produce intuitive results.

Hereis afragment that tests a scalar value from a hash:
print if defined $switch{'D };

When used on a hash element like this, defined only tells you whether the value is defined, not whether

the key has an entry in the hash table. It's possible to have an undefined scalar value for an existing hash
key. Use exists to determine whether the hash key exists.

In the next example we use the fact that some operations return the undefined value when you run out of
data:

print "$val\n" while defined($val = pop(@ry));

The same thing goes for error returns from system calls:
die "Can't readlink $sym $!"
unl ess defined($val ue = readlink $syn;
Since symbol tables for packages are stored as hashes (associative arrays), it's possible to check for the
existence of a package like this:
die "No XYZ package defined"” unless defined 9XYZ: :;

Finally, it's possible to avoid blowing up on nonexistent subroutines:

sub saynmaybe {
i f (defined &say) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

} say(@);

el se {
warn "Can't say";

}
}
See also undef.
[Previous: 3.2.24 dbmopen| Programming Next: 3.2.26
Perl delete
3.2.24 domopen Book 3.2.26 delete
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.27
3.2.25 defined Functions die
3.2.26 delete
del et e EXPR

This function deletes the specified key and associated value from the specified hash. (It doesn't delete a
file. See unlink for that.) Deleting from $ENV{ } modifies the environment. Deleting from a hash that is

bound to a (writable) DBM file deletes the entry from the DBM file.

The following naive example inefficiently deletes all the values of a hash:

foreach $key (keys %HASH) {
del et e $HASH{ $key};
}

(It would be faster to use the undef command on the whole hash.) EXPR can be arbitrarily complicated
aslong as the final operation is a hash key lookup:

del et e $ref->[$x][$y] { $key};

For normal hashes, the delete function happens to return the value (not the key) that was deleted, but this
behavior is not guaranteed for tied hashes, such as those bound to DBM files.

To test whether a hash element has been deleted, use exists.

Previous: Programming Next: 3.2.27
3.2.25 defined Perl die
3.2.25 defined Book 3.2.27 die
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.28
3.2.26 delete Functions do
3.2.27 die
die LIST

Outside of an eval, this function prints the concatenated value of LI ST to STDERR and exits with the
current value of $! (er r no). If $! is0, it exitswith thevalue of ($? >> 8) (which isthe status of the
last reaped child from a system, wait, close on a pipe, or ‘command). If ($? >> 8) is0, it exitswith
255. If L1 ST isunspecified, the current value of the $@variable is propagated, if any. Otherwise the
string " Di ed" isused as the default.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';

chdir '/usr/spool/news' or die "Can't cd to spool: $!'\n"

(The second form is generally preferred, since the important part is the chdir.)

Within an eval, the function sets the $@ variable equal to the error message that would have been
produced otherwise, and aborts the eval, which then returns the undefined value. The die function can

thus be used to raise named exceptions that can be caught at a higher level in the program. See the
section on the eval function later in this chapter.

If thefinal value of L1 ST does not end in a newline, the current script filename, line number, and input
line number (if any) are appended to the message, as well as a newline. Hint: sometimes appending " ,
st opped" to your message will cause it to make better sense when the string” at scri pt nanme

| i ne 123" isappended. Suppose you are running script canasta:

die "/etc/ganmes is no good”;
die "/etc/ganmes is no good, stopped”;

which produces, respectively:

/etc/games is no good at canasta |line 123.
/etc/ganmes is no good, stopped at canasta |line 123.

If you want your own error messages reporting the filename and linenumber, usethe _ FI LE__ and
__LINE__ special tokens:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

die """, _FILE , '", line', __LINE_, ", phooey on you!\n";

This produces output like:
"“canasta", l|line 38, phooey on you!

See also exit and warn.

Previous: Programming Next: 3.2.28
3.2.26 delete Perl do
3.2.26 delete Book 3.2.28 do
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.29
3.2.27 die Functions dump
3.2.28 do

do BLOCK

do SUBROUTI NE(LI ST)

do EXPR

The do BLOCK form executes the sequence of commands in the BLOCK, and returns the value of the last
expression evaluated in the block. When modified by aloop modifier, Perl executes the BLOCK once
before testing the loop condition. (On other statements the loop modifiers test the conditional first.)

The do SUBROUTI NE(LI ST) isadeprecated form of a subroutine call. See " Subroutines" in Chapter
2.

The do EXPR form uses the value of EXPR as a filename and executes the contents of the file as a Perl
script. Its primary useis (or rather was) to include subroutines from a Perl subroutine library, so that:

do 'stat.pl';

israther like:
eval “cat stat.pl ;

except that it's more efficient, more concise, keeps track of the current filename for error messages, and
searches all the directories listed in the @I NC array. (See the section on " Special Variables' in Chapter

2.) It'sthe same, however, in that it does reparse the file every time you call it, so you probably don't
want to do thisinside a loop.

Note that inclusion of library modulesis better done with the use and r equir e operators, which also do
error checking and raise an exception if there's a problem.

Previous: Programming Next: 3.2.29
3.2.27 die Perl dump
3.2.27 die Book 3.2.29 dump
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.30
3.2.28 do Functions each
3.2.29 dump
dunp LABEL
dunp

This function causes an immediate core dump. Primarily thisis so that you can use undump(1) to turn
your core dump into an executable binary after having initialized all your variables at the beginning of
the program. (The undump program is not supplied with the Per| distribution, and is not even possible on
some architectures. There are hooks in the code for using the GNU unexec() routine as an alternative.
Other methods may be supported in the future.) When the new binary is executed it will begin by
executing agot o LABEL (with all the restrictions that goto suffers). Think of the operation asagoto
with an intervening core dump and reincarnation. If LABEL is omitted, the function arranges for the
program to restart from the top. Please note that any files opened at the time of the dump will not be open
any more when the program is reincarnated, with possible confusion resulting on the part of Perl. See
also the -u command-line switch. For example:

#! [usr/ bi n/ per|

use CGetopt::Std;
use MyHorri dMbdul e;

Y%days = (
Sun => 1,
Mon => 2,
Tue => 3,
Wed => 4,
Thu => 5,
Fri => 6,
Sat => 7,

)i

dunp QUI CKSTART if $ARGV[O0] eq '-d';
QUI CKSTART:
Getopts('f:");

This startup code does some slow initialization code, and then calls the dump function to take a snapshot
of the program's state. When the dumped version of the program isrun, it bypasses al the startup code

file:///D|/Cool Stuff/old/ftp/preview/perl/search/psrch.htm

and goes directly to the QUI CKSTART label. If the original script isinvoked without the -d switch, it just
falls through and runs normally.

If you're looking to use dump to speed up your program, check out the discussion of efficiency matters
in Chapter 8, Other Oddments, as well the Perl native-code compiler in Chapter 6. Y ou might also
consider autoloading, which at least makes it appear to run faster.

Previous: Programming Next: 3.2.30
3.2.28 do Perl each
3.2.28 do Book 3.2.30 each
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

E@ Programming Perl —

Previous: Chapter 3 Next: 3.2.31
3.2.29 dump Functions eof
3.2.30 each
each HASH

This function returns atwo-element list consisting of the key and value for the next value of a hash. With
successive callsto each you can iterate over the entire hash. Entries are returned in an apparently random

order. When the hash is entirely read, anull list is returned (which, when used in alist assignment,
produces afalse value). The next call